Identification of time-varying OE models in presence of non-Gaussian noise: Application to pneumatic servo drives

2016 ◽  
Vol 26 (18) ◽  
pp. 3974-3995 ◽  
Author(s):  
Vladimir Stojanovic ◽  
Novak Nedic
2020 ◽  
Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.


Author(s):  
Stephan Schmidt ◽  
Fakher Chaari ◽  
Radoslaw Zimroz ◽  
P. Stephan Heyns ◽  
Mohamed Haddar

2020 ◽  
Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.


Sign in / Sign up

Export Citation Format

Share Document