Distributed robust tracking control for multiple Euler–Lagrange systems with full‐state constraints and input saturation using an event‐triggered scheme

Author(s):  
Haitao Liu ◽  
Guangshuo Du ◽  
Xuehong Tian ◽  
Lanping Zou
2021 ◽  
Author(s):  
Haitao liu ◽  
Guangshuo Du ◽  
Xuehong Tian ◽  
Lanping Zou

Abstract In this paper, the issue of distributed tracking control is studied for multiple Euler–Lagrange systems in presence of external disturbances and input saturation. Specifically, the full-state constraints, input saturation, communication delay, and unmeasured velocity are also considered simultaneously. Firstly, an adaptive distributed state observer is introduced to obtain the leader's time-varying position information, at the same time, a delay function is employed to compensate the communication delay. Moreover, the event-triggered control scheme is developed to reduce communication source and computation load, and the anti-saturation compensation algorithm is exploited to compensate for the influence of system saturation. Thirdly, an adaptive law is designed to offset external disturbances. What’s more, the high-gain observer is used to estimate the unmeasured velocities. Theorem analysis shows that the system errors can converge to zero. Finally, numerical simulations are present to verify the effectiveness of the proposed control strategy.


2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880811 ◽  
Author(s):  
Hongde Qin ◽  
Chengpeng Li ◽  
Yanchao Sun ◽  
Zhongchao Deng ◽  
Yuhan Liu

This article investigates the trajectory tracking control problem for unmanned surface vessels with input saturation and full-state constraints. The barrier Lyapunov function is used to solve the problem of state constraints, and the adaptive method is employed to handle the unknown random disturbances and saturation problems. The proposed control approach can guarantee that the control law and signals of closed-loop system are uniformly bounded and achieve the asymptotic tracking. Finally, simulation studies are provided to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document