Student empowerment in an environmental science classroom: Toward a framework for social justice science education

2012 ◽  
Vol 96 (6) ◽  
pp. 990-1012 ◽  
Author(s):  
Alexandra Schindel Dimick
2015 ◽  
Vol 24 (3) ◽  
pp. 206-208
Author(s):  
Christoph Baumberger ◽  
Gertrude Hirsch Hadorn ◽  
Deborah Mühlebach

Author(s):  
Wilton Lodge

AbstractThe focus of this response to Arthur Galamba and Brian Matthews’s ‘Science education against the rise of fascist and authoritarian movements: towards the development of a Pedagogy for Democracy’ is to underpin a critical pedagogy that can be used as a counterbalancing force against repressive ideologies within science classrooms. Locating science education within the traditions of critical pedagogy allows us to interrogate some of the historical, theoretical, and practical contradictions that have challenged the field, and to consider science learning as part of a wider struggle for social justice in education. My analysis draws specifically on the intellectual ideas of Paulo Freire, whose work continues to influence issues of theoretical, political, and pedagogical importance. A leading social thinker in educational practice, Freire rejected the dominant hegemonic view that classroom discourse is a neutral and value-free process removed from the juncture of cultural, historical, social, and political contexts. Freire’s ideas offer several themes of relevance to this discussion, including his banking conception of education, dialog and conscientization, and teaching as a political activity. I attempt to show how these themes can be used to advance a more socially critical and democratic approach to science teaching.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-49
Author(s):  
Nadja Belova ◽  
Ingo Eilks

In our everyday lives we are surrounded by advertising in its various forms. Thus in the school context it is not surprising that the issue of advertising is addressed by different subjects, with the main foci being advertising-specific language, images and illustrations, use of stereotypes, strategies of persuasion etc. But advertising also contains factual information, being explicit or implicit, to make a campaign more credible and underline the effectiveness of a certain product. Dealing with the use of factual information in advertising critically is important for the consumer. For many products this information is derived from science and technology. Understanding the science in and behind advertising is necessary to become a critical consumer. Learning about the use of science in advertising also allows promoting societal-oriented communication and decision making skills in the science classroom. Unfortunately, only a few examples on the use of advertising in the science classroom exist. This paper provides a justification for the use of advertising in science education. Examples from the classroom developed in the framework of the PROFILES-project are provided by way of illustration.


Author(s):  
Edward G. Lyon

The recent release of science education documents such as A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (National Research Council, 2012) marks the transition into a new generation of science education. This transition necessitates a close look at how pre-college science teachers will assess a diverse group of students in ways that are consistent with science education reform. In this chapter, the authors identify current research in science assessment and employ assessment coherence, assessment use, and assessment equity as guiding principles to address the challenges of putting science assessment research into classroom practice. To exemplify these challenges, they describe a study where a research instrument designed to measure scientific reasoning skills was translated into a high school science classroom assessment. The goal of this chapter is to stimulate conversation in the science education community (researchers, assessment developers, teacher educators, administrators, and classroom teachers) about how to put science assessment research successfully into practice and to describe what next steps need to be taken, particularly around assessing diverse student populations.


2013 ◽  
pp. 1615-1633
Author(s):  
Edward G. Lyon

The recent release of science education documents such as A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (National Research Council, 2012) marks the transition into a new generation of science education. This transition necessitates a close look at how pre-college science teachers will assess a diverse group of students in ways that are consistent with science education reform. In this chapter, the authors identify current research in science assessment and employ assessment coherence, assessment use, and assessment equity as guiding principles to address the challenges of putting science assessment research into classroom practice. To exemplify these challenges, they describe a study where a research instrument designed to measure scientific reasoning skills was translated into a high school science classroom assessment. The goal of this chapter is to stimulate conversation in the science education community (researchers, assessment developers, teacher educators, administrators, and classroom teachers) about how to put science assessment research successfully into practice and to describe what next steps need to be taken, particularly around assessing diverse student populations.


Author(s):  
Yufeng Qian

The purpose of this chapter is to identify the potential and challenges in science education in the use of 3D MUVE science programs. These programs offer a number of instructional benefits in motivating and engaging students and in improving their science learning and scientific inquiry. 3D MUVE is a promising media in narrowing gender and racial achievement gaps and enabling an authentic and valid assessment of science education. Like all new instructional technologies, however, the wide use and implementation of 3D MUVE technology in mainstream science classroom is still facing a number of challenges, which are mainly related to technological complexity and cost, and design difficulty in incorporating some elements critical to inquiry-based learning into the 3D MUVE environment. To overcome these identified challenges and make optimal use of the opportunities, suggestions for integrating 3D MUVE into science curriculum and classroom are made and discussed, along with future research directions.


Sign in / Sign up

Export Citation Format

Share Document