How local image velocity is detected by cells on the magnocellular pathway of the visual cortex

1995 ◽  
Vol 26 (8) ◽  
pp. 22-34
Author(s):  
Susumu Kawakami ◽  
Hiroaki Okamoto

Some computational theories of motion perception assume that the first stage en route to this perception is the local estimate of image velocity. However, this assumption is not supported by data from the primary visual cortex. Its motion sensitive cells are not selective to velocity, but rather are directionally selective and tuned to spatio-temporal frequen­cies. Accordingly, physiologically based theories start with filters selec­tive to oriented spatio-temporal frequencies. This paper shows that computational and physiological theories do not necessarily conflict, because such filters may, as a population, compute velocity locally. To prove this point, we show how to combine the outputs of a class of frequency tuned filters to detect local image velocity. Furthermore, we show that the combination of filters may simulate ‘Pattern’ cells in the middle temporal area (MT), whereas each filter simulates primary visual cortex cells. These simulations include three properties of the primary cortex. First, the spatio-temporal frequency tuning curves of the in­dividual filters display approximate space-time separability. Secondly, their direction-of-motion tuning curves depend on the distribution of orientations of the components of the Fourier decomposition and speed of the stimulus. Thirdly, the filters show facilitation and suppression for responses to apparent motions in the preferred and null directions, respect­ively. It is suggested that the MT’s role is not to solve the aperture problem, but to estimate velocities from primary cortex information. The spatial integration that accounts for motion coherence may be postponed to a later cortical stage.


2014 ◽  
Vol 26 (8) ◽  
pp. 1764-1774 ◽  
Author(s):  
Damien J. Mannion ◽  
Daniel J. Kersten ◽  
Cheryl A. Olman

The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.


1997 ◽  
Vol 14 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Arne Valberg ◽  
Inger Rudvin

AbstractWe have measured transient visual evoked potentials (VEPs) to low-contrast luminance stimuli favoring responses of magnocellular pathway cells and to low-contrast red-green stimuli favoring parvocellular cells. Stimuli were square-wave alternating, 3-deg homogeneous disks. Low-contrast stimuli modulated in luminance elicited relatively simple responses. For some observers, a negativity was present that saturated at low contrast. This may be the signature of inputs from magnocellular channels to the visual cortex. The slope of the contrast—response curve for low-contrast stimuli was about the same for all subjects. For medium contrasts, these contrast—response curves displayed an abrupt increase of slope. The shallower slope may reflect the responsivity of magnocellular-pathway inputs to the cortex, whereas the steeper slope may be caused by additional parvocellular activation.Contrast-response curves for the most sensitive waveforms of the isoluminant green—red modulation also showed two branches, although not as clearly as for luminance. This may indicate parvocellular-mediated activity for small chromatic differences, and a combination of parvocellular and magnocellular inputs for larger contrasts. Curves of time-to-peak response as a function of contrast often changed their monotonous behavior near the kink of the corresponding contrast—response curve, thus supporting the notion of a contribution from several mechanisms to the main waveforms.


1997 ◽  
Vol 28 ◽  
pp. S295 ◽  
Author(s):  
Wakako Urushihara ◽  
Ken-ichiro Miura ◽  
Takashi Nagano

Sign in / Sign up

Export Citation Format

Share Document