early visual processing
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 2)

Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

AbstractResearch on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g., lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g., bulb) with (i) naturally frequent, derivational suffixes (e.g., -ment), (ii) non-morphological, equally frequent word-endings (e.g., -idge), and (iii) non-morphological, infrequent word-endings (e.g., -kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word-endings, a pattern that was replicated in a second experiment including also lexical primes. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Csizmadia ◽  
István Czigler ◽  
Boglárka Nagy ◽  
Zsófia Anna Gaál

We do not know enough about the cognitive background of creativity despite its significance. Using an active oddball paradigm with unambiguous and ambiguous portrait paintings as the standard stimuli, our aim was to examine whether: creativity in the figural domain influences the perception of visual stimuli; any stages of visual processing; or if healthy aging has an effect on these processes. We investigated event related potentials (ERPs) and applied ERP decoding analyses in four groups: younger less creative; younger creative; older less creative; and older creative adults. The early visual processing did not differ between creativity groups. In the later ERP stages the amplitude for the creative compared with the less creative groups was larger between 300 and 500 ms. The stimuli types were clearly distinguishable: within the 300–500 ms range the amplitude was larger for ambiguous rather than unambiguous paintings, but this difference in the traditional ERP analysis was only observable in the younger, not elderly groups, who also had this difference when using decoding analysis. Our results could not prove that visual creativity influences the early stage of perception, but showed creativity had an effect on stimulus processing in the 300–500 ms range, in indexing differences in top-down control, and having more flexible cognitive control in the younger creative group.


2021 ◽  
Vol 7 (1) ◽  
pp. 181-199
Author(s):  
Anita A. Disney

Visual processing is dynamically controlled by multiple neuromodulatory molecules that modify the responsiveness of neurons and the strength of the connections between them. In particular, modulatory control of processing in the lateral geniculate nucleus of the thalamus, V1, and V2 will alter the outcome of all subsequent processing of visual information, including the extent to and manner in which individual inputs contribute to perception and decision making and are stored in memory. This review addresses five small-molecule neuromodulators—acetylcholine, dopamine, serotonin, noradrenaline, and histamine—considering the structural basis for their action, and the effects of their release, in the early visual pathway of the macaque monkey. Traditionally, neuromodulators are studied in isolation and in discrete circuits; this review makes a case for considering the joint action of modulatory molecules and differences in modulatory effects across brain areas as a better means of understanding the diverse roles that these molecules serve.


Author(s):  
Madison H. Fung ◽  
Brittany K. Taylor ◽  
Brandon J. Lew ◽  
Michaela R. Frenzel ◽  
Jacob A. Eastman ◽  
...  

2021 ◽  
Author(s):  
Matthijs N. oude Lohuis ◽  
Alexis Cerván Cantón ◽  
Cyriel M. A. Pennartz ◽  
Umberto Olcese

SummaryOver the past few years, the various areas that surround the primary visual cortex in the mouse have been associated with many functions, ranging from higher-order visual processing to decision making. Recently, some studies have shown that higher-order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here we studied how in vivo optogenetic inactivation of two higher-order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher-order visual areas similarly modulate early visual processing. In particular, these areas broaden stimulus responsiveness in the primary visual cortex, by amplifying sensory-evoked responses for stimuli not moving along the orientation preferred by individual neurons. Thus, feedback from higher-order visual areas amplifies V1 responses to non-preferred stimuli, which may aid their detection.


2021 ◽  
Author(s):  
Aaron R Nidiffer ◽  
Cody Zhewei Cao ◽  
Aisling O’Sullivan ◽  
Edmund C Lalor

AbstractThere is considerable debate over how visual speech is processed in the absence of sound and whether neural activity supporting lipreading occurs in visual brain areas. Surprisingly, much of this ambiguity stems from a lack of behaviorally grounded neurophysiological findings. To address this, we conducted an experiment in which human observers rehearsed audiovisual speech for the purpose of lipreading silent versions during testing. Using a combination of computational modeling, electroencephalography, and simultaneously recorded behavior, we show that the visual system produces its own specialized representation of speech that is 1) well-described by categorical linguistic units (“visemes”) 2) dissociable from lip movements, and 3) predictive of lipreading ability. These findings contradict a long-held view that visual speech processing co-opts auditory cortex after early visual processing stages. Consistent with hierarchical accounts of visual and audiovisual speech perception, our findings show that visual cortex performs at least a basic level of linguistic processing.


2021 ◽  
Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

Research on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g.,lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g.,bulb) with (i) naturally frequent, derivational suffixes (e.g.,-ment), (ii) non-morphological, equally frequent word endings (e.g.,-idge), and (iii) non-morphological, infrequent word endings (e.g.,-kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word endings. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


2021 ◽  
Vol 397 ◽  
pp. 112930
Author(s):  
Manuel Vázquez-Marrufo ◽  
Alberto del Barco-Gavala ◽  
Alejandro Galvao-Carmona ◽  
Rubén Martín-Clemente

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kyuto Uno ◽  
Kazuhiko Yokosawa

AbstractGrapheme-colour synaesthesia is a condition in which the visual perception of letters or numbers induces a specific colour sensation. In this study, we demonstrated that the apparent physical brightness of graphemes is modulated by the synaesthetic colours elicited by them. Synaesthetes first selected a synaesthetic colour corresponding to each capital letter and digit. Then, we selected a grapheme stimulus with a bright synaesthetic colour and one with a dark colour for each synaesthete. Finally, synaesthetes and non-synaesthete controls participated in a brightness judgment task, in which each participant judged the real brightness of each of the two stimuli compared to a standard stimulus. Compared to non-synaesthetes, synaesthetes judged a grapheme with a bright synaesthetic colour to be brighter than one with a dark synaesthetic colour, suggesting that the synaesthetic colour experience of synaesthetes alters their brightness perception. Such alteration in real brightness perception was observed both in those who experienced synaesthetic colours in external space (projector-type synaesthetes) and in those who experienced such colours ‘in the mind’s eye’ (associator-type synaesthetes). These results support the view that early visual processing is modulated by feedback transmitted from the V4 colour area, the neural activation of which accompanies synaesthetic colour experience.


Sign in / Sign up

Export Citation Format

Share Document