scholarly journals Special issue on “Applications of machine learning techniques to intrusion detection and digital forensics”

2011 ◽  
Vol 4 (7) ◽  
pp. e1-e1
Author(s):  
Manojit Chattopadhyay ◽  
Rinku Sen ◽  
Sumeet Gupta

Securing a machine from various cyber-attacks has been of serious concern for researchers, statutory bodies such as governments, business organizations and users in both wired and wireless media. However, during the last decade, the amount of data handling by any device, particularly servers, has increased exponentially and hence the security of these devices has become a matter of utmost concern. This paper attempts to examine the challenges in the application of machine learning techniques to intrusion detection. We review different inherent issues in defining and applying the machine learning techniques to intrusion detection. We also attempt to identify the best technological solution for changing usage pattern by comparing different machine learning techniques on different datasets and summarizing their performance using various performance metrics. This paper highlights the research challenges and future trends of intrusion detection in dynamic scenarios of intrusion detection problems in diverse network technologies.


The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


Author(s):  
Navjot Singh ◽  
Amarjot Kaur

The objective of the present chapter is to highlight applications of machine learning and artificial intelligence (AI) in clinical diagnosis of neurodevelopmental disorders. The proposed approach aims at recognizing behavioral traits and other cognitive aspects. The availability of numerous data and high processing power, such as graphic processing units (GPUs) or cloud computing, enabled the study of micro-patterns hundreds of times faster compared to manual analysis. AI, being a new technological breakthrough, enables study of human behavior patterns, which are hidden in millions of micro-patterns originating from human actions, reactions, and gestures. The chapter will also focus on the challenges in existing machine learning techniques and the best possible solution addressing those problems. In the future, more AI-based expert systems can enhance the accuracy of the diagnosis and prognosis process.


2021 ◽  
pp. 249-263
Author(s):  
Arash Moradzadeh ◽  
Amin Mansour-Saatloo ◽  
Morteza Nazari-Heris ◽  
Behnam Mohammadi-Ivatloo ◽  
Somayeh Asadi

Author(s):  
Qifang Bi ◽  
Katherine E Goodman ◽  
Joshua Kaminsky ◽  
Justin Lessler

Abstract Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.


Sign in / Sign up

Export Citation Format

Share Document