A multiple imputation‐based sensitivity analysis approach for data subject to missing not at random

2020 ◽  
Vol 39 (26) ◽  
pp. 3756-3771
Author(s):  
Chiu‐Hsieh Hsu ◽  
Yulei He ◽  
Chengcheng Hu ◽  
Wei Zhou
10.2196/26749 ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. e26749
Author(s):  
Simon B Goldberg ◽  
Daniel M Bolt ◽  
Richard J Davidson

Background Missing data are common in mobile health (mHealth) research. There has been little systematic investigation of how missingness is handled statistically in mHealth randomized controlled trials (RCTs). Although some missing data patterns (ie, missing at random [MAR]) may be adequately addressed using modern missing data methods such as multiple imputation and maximum likelihood techniques, these methods do not address bias when data are missing not at random (MNAR). It is typically not possible to determine whether the missing data are MAR. However, higher attrition in active (ie, intervention) versus passive (ie, waitlist or no treatment) conditions in mHealth RCTs raise a strong likelihood of MNAR, such as if active participants who benefit less from the intervention are more likely to drop out. Objective This study aims to systematically evaluate differential attrition and methods used for handling missingness in a sample of mHealth RCTs comparing active and passive control conditions. We also aim to illustrate a modern model-based sensitivity analysis and a simpler fixed-value replacement approach that can be used to evaluate the influence of MNAR. Methods We reanalyzed attrition rates and predictors of differential attrition in a sample of 36 mHealth RCTs drawn from a recent meta-analysis of smartphone-based mental health interventions. We systematically evaluated the design features related to missingness and its handling. Data from a recent mHealth RCT were used to illustrate 2 sensitivity analysis approaches (pattern-mixture model and fixed-value replacement approach). Results Attrition in active conditions was, on average, roughly twice that of passive controls. Differential attrition was higher in larger studies and was associated with the use of MAR-based multiple imputation or maximum likelihood methods. Half of the studies (18/36, 50%) used these modern missing data techniques. None of the 36 mHealth RCTs reviewed conducted a sensitivity analysis to evaluate the possible consequences of data MNAR. A pattern-mixture model and fixed-value replacement sensitivity analysis approaches were introduced. Results from a recent mHealth RCT were shown to be robust to missing data, reflecting worse outcomes in missing versus nonmissing scores in some but not all scenarios. A review of such scenarios helps to qualify the observations of significant treatment effects. Conclusions MNAR data because of differential attrition are likely in mHealth RCTs using passive controls. Sensitivity analyses are recommended to allow researchers to assess the potential impact of MNAR on trial results.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Giulia Carreras ◽  
◽  
Guido Miccinesi ◽  
Andrew Wilcock ◽  
Nancy Preston ◽  
...  

Abstract Background Missing data are common in end-of-life care studies, but there is still relatively little exploration of which is the best method to deal with them, and, in particular, if the missing at random (MAR) assumption is valid or missing not at random (MNAR) mechanisms should be assumed. In this paper we investigated this issue through a sensitivity analysis within the ACTION study, a multicenter cluster randomized controlled trial testing advance care planning in patients with advanced lung or colorectal cancer. Methods Multiple imputation procedures under MAR and MNAR assumptions were implemented. Possible violation of the MAR assumption was addressed with reference to variables measuring quality of life and symptoms. The MNAR model assumed that patients with worse health were more likely to have missing questionnaires, making a distinction between single missing items, which were assumed to satisfy the MAR assumption, and missing values due to completely missing questionnaire for which a MNAR mechanism was hypothesized. We explored the sensitivity to possible departures from MAR on gender differences between key indicators and on simple correlations. Results Up to 39% of follow-up data were missing. Results under MAR reflected that missingness was related to poorer health status. Correlations between variables, although very small, changed according to the imputation method, as well as the differences in scores by gender, indicating a certain sensitivity of the results to the violation of the MAR assumption. Conclusions The findings confirmed the importance of undertaking this kind of analysis in end-of-life care studies.


2020 ◽  
Author(s):  
Simon B Goldberg ◽  
Daniel M Bolt ◽  
Richard J Davidson

BACKGROUND Missing data are common in mobile health (mHealth) research. There has been little systematic investigation of how missingness is handled statistically in mHealth randomized controlled trials (RCTs). Although some missing data patterns (ie, missing at random [MAR]) may be adequately addressed using modern missing data methods such as multiple imputation and maximum likelihood techniques, these methods do not address bias when data are missing not at random (MNAR). It is typically not possible to determine whether the missing data are MAR. However, higher attrition in active (ie, intervention) versus passive (ie, waitlist or no treatment) conditions in mHealth RCTs raise a strong likelihood of MNAR, such as if active participants who benefit less from the intervention are more likely to drop out. OBJECTIVE This study aims to systematically evaluate differential attrition and methods used for handling missingness in a sample of mHealth RCTs comparing active and passive control conditions. We also aim to illustrate a modern model-based sensitivity analysis and a simpler fixed-value replacement approach that can be used to evaluate the influence of MNAR. METHODS We reanalyzed attrition rates and predictors of differential attrition in a sample of 36 mHealth RCTs drawn from a recent meta-analysis of smartphone-based mental health interventions. We systematically evaluated the design features related to missingness and its handling. Data from a recent mHealth RCT were used to illustrate 2 sensitivity analysis approaches (pattern-mixture model and fixed-value replacement approach). RESULTS Attrition in active conditions was, on average, roughly twice that of passive controls. Differential attrition was higher in larger studies and was associated with the use of MAR-based multiple imputation or maximum likelihood methods. Half of the studies (18/36, 50%) used these modern missing data techniques. None of the 36 mHealth RCTs reviewed conducted a sensitivity analysis to evaluate the possible consequences of data MNAR. A pattern-mixture model and fixed-value replacement sensitivity analysis approaches were introduced. Results from a recent mHealth RCT were shown to be robust to missing data, reflecting worse outcomes in missing versus nonmissing scores in some but not all scenarios. A review of such scenarios helps to qualify the observations of significant treatment effects. CONCLUSIONS MNAR data because of differential attrition are likely in mHealth RCTs using passive controls. Sensitivity analyses are recommended to allow researchers to assess the potential impact of MNAR on trial results.


2020 ◽  
Vol 29 (10) ◽  
pp. 3076-3092 ◽  
Author(s):  
Susan Gachau ◽  
Matteo Quartagno ◽  
Edmund Njeru Njagi ◽  
Nelson Owuor ◽  
Mike English ◽  
...  

Missing information is a major drawback in analyzing data collected in many routine health care settings. Multiple imputation assuming a missing at random mechanism is a popular method to handle missing data. The missing at random assumption cannot be confirmed from the observed data alone, hence the need for sensitivity analysis to assess robustness of inference. However, sensitivity analysis is rarely conducted and reported in practice. We analyzed routine paediatric data collected during a cluster randomized trial conducted in Kenyan hospitals. We imputed missing patient and clinician-level variables assuming the missing at random mechanism. We also imputed missing clinician-level variables assuming a missing not at random mechanism. We incorporated opinions from 15 clinical experts in the form of prior distributions and shift parameters in the delta adjustment method. An interaction between trial intervention arm and follow-up time, hospital, clinician and patient-level factors were included in a proportional odds random-effects analysis model. We performed these analyses using R functions derived from the jomo package. Parameter estimates from multiple imputation under the missing at random mechanism were similar to multiple imputation estimates assuming the missing not at random mechanism. Our inferences were insensitive to departures from the missing at random assumption using either the prior distributions or shift parameters sensitivity analysis approach.


Sign in / Sign up

Export Citation Format

Share Document