Multiple imputation confidence intervals for the mean of the discrete distributions for incomplete data

2021 ◽  
Author(s):  
Chung‐Han Lee ◽  
Hsiuying Wang
2021 ◽  
Vol 12 (1) ◽  
pp. 275-286
Author(s):  
Ayesha Ammar ◽  
Kahkashan Bashir Mir ◽  
Sadaf Batool ◽  
Noreen Marwat ◽  
Maryam Saeed ◽  
...  

Objective: Study was aimed to see the effects of hypothyroidism on GFR as a renal function. Material and methods: Total of Fifty-eight patients were included in the study. Out of those forty-eight patients were female and the rest were male. Out of fifty eight patients, fifty three patients were of thyroid cancer in which hypothyroidism was due to discontinuation of thyroxine before the administration of radioactive iodine for Differentiated thyroid cancer.Moreover, remaining five patients were post radioactive iodine treatment (for hyperthyroidism) hypothyroid. All of the patients were above eighteen years of age with TSH value > 30µIU/ml. Pregnant and lactating females were excluded.Renal function tests (urea/creatinine, creatinine clearance) and serum electrolytes followed by Tc-99m-DTPA renal scan for GFR assessment (GATES’ method) were carried out in all subjects twice during the study, One study during hypothyroid state (TSH > 30 µIU/ml) and other during euthyroid state (TSH between 0.4 to 4µ IU/ml). The results of Student’s t-test showed significant difference in renal functions (Urea, creatinine, creatinine clearance, GFR values) in euthyroid state and hypothyroid state (p-value <0.05). RESULTS: In case of creatinine the paired t test reveal the mean 1.014±0.428, with standard error of 0.669 within 95% confidence interval, for creatinine clearance 80.11±14.12 with standard error of 1.94 within 95% confidence intervals, for urea the mean 28±12.13 with standard error of 1.607 within 95% confidence intervals and for GFR for individual kidney is 38.056±8.56 with standard error of 1.3717 within 95% confidence interval. There was no difference in the outcome of the 2 groups. Conclusion: Hypothyroidism impairs renal function to a significant level and hence needs to be prevented and corrected as early as possible.


Author(s):  
M. H Badii

Keywords: Estimations, sampling, statisticsAbstract. The notion of statistical estimation both in terms of point and interval is described. The criteria of a good estimator are noted. The procedures to calculate the intervals for the mean, proportions and the difference among two means as well as the confidence intervals for the probable errors in statistics are provided.Palabras clave: Estadística, estimación, muestreoResumen. En la presente investigación se describen la noción de la estimación estadística, tanto de tipo puntual con de forma de intervalo. Se presentan los criterios que debe reunir un estimador bueno. Se notan con ejemplos, la forma de calcular la estimación del intervalo para la media, la proporción y de la diferencia entre dos medias y los intervalos de confianza para los errores probables.


Author(s):  
Byron C. Jaeger ◽  
Ryan Cantor ◽  
Venkata Sthanam ◽  
Rongbing Xie ◽  
James K. Kirklin ◽  
...  

Background: Risk prediction models play an important role in clinical decision making. When developing risk prediction models, practitioners often impute missing values to the mean. We evaluated the impact of applying other strategies to impute missing values on the prognostic accuracy of downstream risk prediction models, that is, models fitted to the imputed data. A secondary objective was to compare the accuracy of imputation methods based on artificially induced missing values. To complete these objectives, we used data from the Interagency Registry for Mechanically Assisted Circulatory Support. Methods: We applied 12 imputation strategies in combination with 2 different modeling strategies for mortality and transplant risk prediction following surgery to receive mechanical circulatory support. Model performance was evaluated using Monte-Carlo cross-validation and measured based on outcomes 6 months following surgery using the scaled Brier score, concordance index, and calibration error. We used Bayesian hierarchical models to compare model performance. Results: Multiple imputation with random forests emerged as a robust strategy to impute missing values, increasing model concordance by 0.0030 (25th–75th percentile: 0.0008–0.0052) compared with imputation to the mean for mortality risk prediction using a downstream proportional hazards model. The posterior probability that single and multiple imputation using random forests would improve concordance versus mean imputation was 0.464 and >0.999, respectively. Conclusions: Selecting an optimal strategy to impute missing values such as random forests and applying multiple imputation can improve the prognostic accuracy of downstream risk prediction models.


2021 ◽  
Vol 3 ◽  
Author(s):  
Rongjian Zhao ◽  
Lidong Du ◽  
Zhan Zhao ◽  
Xianxiang Chen ◽  
Jie Sun ◽  
...  

The aim of this work is to present a method for accurately estimating heart and respiration rates under different actual conditions based on a mattress which was integrated with an optical fiber sensor. During the estimation, a ballistocardiogram (BCG) signal, which was obtained from the optical fiber sensor, was used for extracting the heart rate and the respiration rate. However, due to the detrimental effects of the differential detector, self-interference, and variation of installation status of the sensor, the ballistocardiogram (BCG) signal was difficult to detect. In order to resolve the potential concerns of individual differences and body interferences, adaptive regulations and statistical classifications spectrum analysis were used in this paper. Experiments were carried out to quantify heart and respiration rates of healthy volunteers under different breathing and posture conditions. From the experimental results, it could be concluded that (1) the heart rates of 40–150 beats per minute (bpm) and respiration rates of 10–20 breaths per minute (bpm) were measured for individual differences; (2) for the same individuals under four different posture contacts, the mean errors of heart rates were separately 1.60 ± 0.98 bpm, 1.94 ± 0.83 bpm, 1.24 ± 0.59 bpm, and 1.06 ± 0.62 bpm, in contrast, the mean errors of the polar beat device were 1.09 ± 0.96 bpm, 1.44 ± 0.99 bpm, and 1.78 ± 0.94 bpm. Furthermore, the experimental results were validated by conventional counterparts which used skin-contacting electrodes as their measurements. It was reported that the heart rate was 0.26 ± 2.80 bpm in 95% confidence intervals (± 1.96SD) in comparison with Philips sure-signs VM6 medical monitor, and the respiration rate was 0.41 ± 1.49 bpm in 95% confidence intervals (± 1.96SD) in comparison with ECG-derived respiratory (EDR) measurements for respiration rates. It was indicated that the developed system using adaptive regulations and statistical classifications spectrum analysis performed better and could easily be used under complex environments.


2021 ◽  
Vol 23 ◽  
Author(s):  
Peyton Cook

This article is intended to help students understand the concept of a coverage probability involving confidence intervals. Mathematica is used as a language for describing an algorithm to compute the coverage probability for a simple confidence interval based on the binomial distribution. Then, higher-level functions are used to compute probabilities of expressions in order to obtain coverage probabilities. Several examples are presented: two confidence intervals for a population proportion based on the binomial distribution, an asymptotic confidence interval for the mean of the Poisson distribution, and an asymptotic confidence interval for a population proportion based on the negative binomial distribution.


2002 ◽  
Vol 21 (10) ◽  
pp. 1443-1459 ◽  
Author(s):  
Douglas J. Taylor ◽  
Lawrence L. Kupper ◽  
Keith E. Muller

Sign in / Sign up

Export Citation Format

Share Document