Embedding Pt‐SnO Nanoparticles into MIL‐101(Cr) Pores: Hydrogen Production with Low Carbon Monoxide Content from a New Methanol Steam Reforming Catalyst

2019 ◽  
Vol 4 (20) ◽  
pp. 6113-6122 ◽  
Author(s):  
Niloofar Kamyar ◽  
Yasin Khani ◽  
Mostafa M. Amini ◽  
Farzad Bahadoran ◽  
Nasser Safari
2020 ◽  
Vol 395 ◽  
pp. 125109 ◽  
Author(s):  
Andrey M. Kovalskii ◽  
Andrei T. Matveev ◽  
Zakhar I. Popov ◽  
Ilia N. Volkov ◽  
Ekaterina V. Sukhanova ◽  
...  

Author(s):  
Douglas P Harrison ◽  
Zhiyong Peng

Hydrogen is an increasingly important chemical raw material and a probable future primary energy carrier. In many current and anticipated applications the carbon monoxide impurity level must be reduced to low-ppmv levels to avoid poisoning catalysts in downstream processes. Methanation is currently used to remove carbon monoxide in petroleum refining operations while preferential oxidation (PROX) is being developed for carbon monoxide control in fuel cells. Both approaches add an additional step to the multi-step hydrogen production process, and both inevitably result in hydrogen loss. The sorption enhanced process for hydrogen production, in which steam-methane reforming, water-gas shift, and carbon dioxide removal reactions occur simultaneously in the presence of a nickel-based reforming catalyst and a calcium-based carbon dioxide sorbent, is capable of producing high purity hydrogen containing minimal carbon monoxide in a single processing step. The process also has the potential for producing pure CO2 that is suitable for subsequent use or sequestration during the sorbent regeneration step. The current research on sorption-enhanced production of low-carbon monoxide hydrogen is an extension of previous research in this laboratory that proved the feasibility of producing 95+% hydrogen (dry basis), but without concern for the carbon monoxide concentration. This paper describes sorption-enhanced reaction conditions – temperature, feed gas composition, and volumetric feed rate – required to produce 95+% hydrogen containing low carbon monoxide concentrations suitable for direct use in, for example, a proton exchange membrane fuel cell.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57199-57209 ◽  
Author(s):  
Saeed Khajeh Talkhoncheh ◽  
Mohammad Haghighi ◽  
Shahab Minaei ◽  
Hossein Ajamein ◽  
Mozaffar Abdollahifar

In this research the effects of synthesis method and CeO2 and ZrO2 promoters were studied in the steam reforming of methanol over a CuO/ZnO/Al2O3 nanocatalyst. Addition of ZrO2 and CeO2 reduces CO selectivity, while CeO2 is more effective.


Sign in / Sign up

Export Citation Format

Share Document