(Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation

2020 ◽  
Vol 395 ◽  
pp. 125109 ◽  
Author(s):  
Andrey M. Kovalskii ◽  
Andrei T. Matveev ◽  
Zakhar I. Popov ◽  
Ilia N. Volkov ◽  
Ekaterina V. Sukhanova ◽  
...  
2019 ◽  
Vol 41 (1) ◽  
pp. 39926
Author(s):  
Raphael Menechini Neto ◽  
Giane Gonçalves Lenzi ◽  
João Lourenço Castagnari Willimann Pimenta ◽  
Arielle Cristina Fornari ◽  
Onélia Aparecida Andreo dos Santos ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 1319-1322
Author(s):  
Shinichi Yamaura ◽  
Shigeyuki Uemiya ◽  
Hisamichi Kimura ◽  
Akihisa Inoue

In this work, we prepared the melt-spun (Ni0.6Nb0.4)70Zr30 amorphous alloy membrane and designed a catalytic reactor for methanol steam reforming combined with the amorphous membrane. Comparing the permeated gas with the evaporated gas, it was found that carbon dioxide (CO2) and carbon monoxide (CO) gases were removed from the permeated gas by using the amorphous membrane. Therefore, purified hydrogen gas was obtained in the reactor. We successfully produced pure hydrogen by using the amorphous membrane.


Author(s):  
Emmanuel Lim ◽  
Teeravit Visutipol ◽  
Wen Peng ◽  
Nico Hotz

In the present study, a catalyst produced by flame spray pyrolysis (FSP) was evaluated for its ability to produce hydrogen-rich gas mixtures. Catalyst particles fabricated by a novel flame spray pyrolysis method resulting in a highly active catalyst with high surface-to-volume ratio were compared to a commercially produced catalyst (BASF F3-01). Both catalysts consisted of CuO/ZnO/Al2O3 of identical composition (CuO 40wt%, ZnO 40wt%, Al2O3 20wt%). Reaction temperatures between 220 and 295 °C, methanol-water inlet flow rates between 2 and 50 μl/min, and reactor masses between 25 and 100 mg were tested for their effect on methanol conversion and the production of undesired carbon monoxide. 100% methanol conversion can be easily achieved within the operational conditions mentioned for this flame-made catalyst — at reactor temperatures of 255 °C (achievable with non-concentrating solar collectors) more than 80% methanol conversion can be reached for methanol-water inlet flow rates as high as 10 μl/min. The FSP catalyst demonstrates similar catalytic abilities as the BASF, produces a consistent gas composition and produces lower overall CO production. Furthermore, the FSP catalyst demonstrates a better suitability to fuel cell use through its higher resistance to degradation and smaller production of carbon monoxide over long-term use. In the present study, the merits of using flame spray pyrolysis to produce CuO/ZnO/Al2O3 methanol steam reforming catalysts are examined, and directly compared to catalysts that are commercially produced in bulk pellet form, and then ground and sieved. The comparison is performed from several different perspectives: catalytic activity and CO production at various temperatures and fuel inlet flow rates; surface and structure characteristics are determined via scanning electron and transmission electron microscopy; surface area characteristics are determined via BET tests.


2013 ◽  
Author(s):  
Nico Hotz

In the present study, a catalyst produced by flame spray pyrolysis (FSP) was evaluated for its ability to produce hydrogen-rich gas mixtures. Catalyst particles fabricated by a novel flame spray pyrolysis method resulting in a highly active catalyst with high surface-to-volume ratio were compared to a commercially produced catalyst (BASF F3-01). Both catalysts consisted of CuO/ZnO/Al2O3 of identical composition (CuO 40wt%, ZnO 40wt%, Al2O3 20wt%). Reaction temperatures between 220 and 295 °C, methanol-water inlet flow rates between 2 and 50 μl/min, and reactor masses between 25 and 100 mg were tested for their effect on methanol conversion and the production of undesired carbon monoxide. 100% methanol conversion can be easily achieved within the operational conditions mentioned for this flame-made catalyst — at reactor temperatures of 255 °C (achievable with non-concentrating solar collectors) more than 80% methanol conversion can be reached for methanol-water inlet flow rates as high as 10 μl/min. The FSP catalyst demonstrates similar catalytic abilities as the BASF, produces a consistent gas composition and produces lower overall CO production. Furthermore, the FSP catalyst demonstrates a better suitability to fuel cell use through its higher resistance to degradation and smaller production of carbon monoxide over long-term use. In the present study, the merits of using flame spray pyrolysis to produce CuO/ZnO/Al2O3 methanol steam reforming catalysts are examined, and directly compared to catalysts that are commercially produced in bulk pellet form, and then ground and sieved. The comparison is performed from several different perspectives: catalytic activity and CO production at various temperatures and fuel inlet flow rates; surface and structure characteristics are determined via scanning electron and transmission electron microscopy; surface area characteristics are determined via Brunauer-Emmett-Teller (BET) tests.


Author(s):  
Meisam heidarzadeh ◽  
Majid Taghizadeh

Abstract Hydrogen production in microchannel reactor by reforming reaction is applied for fuel cells in order to effectively avoid the problem of hydrogen storage. In this study, the Computational Fluid Dynamics (CFD) simulation of methanol steam reforming process was studied for the purpose of producing hydrogen in an annular microchannel coated with Cu/ZnO/Al2O3 catalyst. The modeling mechanism included methanol reforming reaction, methanol decomposition, and water-gas shift reaction. Furthermore, the effects of temperature variations were investigated and the conducted surveys were compared with the experimental results. The simulation results were in good agreement with the experimental data in that the temperature increases at various feed flow rates would lead to enhanced amounts of carbon monoxide and dioxide, while at a constant temperature, the amounts of hydrogen and carbon monoxide and dioxide reduce with increasing feed flow rates.


Sign in / Sign up

Export Citation Format

Share Document