Fluorescent Polyaniline Nanoclips (PANCs): A Highly Sensitive and Selective Chemical Sensor for the Detection of Hg (II) Ions in Aqueous Media

2020 ◽  
Vol 5 (15) ◽  
pp. 4481-4487
Author(s):  
Muppidathi Marieeswaran ◽  
Perumal Panneerselvam
2021 ◽  
Author(s):  
Yong-Qiang Xie ◽  
You-Ming Zhang ◽  
Zhao-Hui Li ◽  
Qi Xiao-Ni ◽  
Hong Yao ◽  
...  

A simple and unique dual-channel chemical probe (DH) was designed and synthesized, which not only realized sequential recognition of Cu2+ and CN− by colorimetric and fluorometric methods, but also realized...


2018 ◽  
Vol 4 (7) ◽  
pp. 1024-1034 ◽  
Author(s):  
Abdoulaye Diarisso ◽  
Modou Fall ◽  
Noureddine Raouafi

The work describes the use of sulfonic acid-functionalized GCE as a scaffold to build a highly sensitive PANI-based sensor for nitrite ions in aqueous medium.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5955
Author(s):  
Qi-Ying Weng ◽  
Ya-Li Zhao ◽  
Jia-Ming Li ◽  
Miao Ouyang

A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca− monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca− and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.


Sign in / Sign up

Export Citation Format

Share Document