New Insight into the Role of Gold Nanoparticles in Au@CdS Core-Shell Nanostructures for Hydrogen Evolution

Small ◽  
2014 ◽  
Vol 10 (22) ◽  
pp. 4664-4670 ◽  
Author(s):  
Xiang Ma ◽  
Kun Zhao ◽  
Hongjie Tang ◽  
Ying Chen ◽  
Chenguang Lu ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2733-2743
Author(s):  
Parisa Talebi ◽  
Harishchandra Singh ◽  
Ekta Rani ◽  
Marko Huttula ◽  
Wei Cao

Surface plasmonic resonance enabled Ni@NiO/NiCO3 core–shell nanostructures as promising photocatalysts for hydrogen evolution under visible light.


RSC Advances ◽  
2017 ◽  
Vol 7 (13) ◽  
pp. 7469-7475 ◽  
Author(s):  
Ryeri Lee ◽  
Yogeenth Kumaresan ◽  
Sei Young Yoon ◽  
Soong Ho Um ◽  
Il Keun Kwon ◽  
...  

In this study, we designed core/shell nanostructures (CSNs) of silicon dioxide (SiO2)/titanium dioxide (TiO2), which were decorated with gold (Au) nanoparticles (NPs), to activate the visible light-driven photocatalytic reaction.


2020 ◽  
Vol MA2020-01 (37) ◽  
pp. 1563-1563
Author(s):  
G. Hernández-Vázquez ◽  
S. Dessources ◽  
Ivonne Liliana Alonso-Lemus ◽  
Beatriz Escobar-Morales ◽  
F.J. Rodríguez-Varela

2020 ◽  
Vol 11 ◽  
pp. 1834-1846
Author(s):  
Bridget K Mutuma ◽  
Xiluva Mathebula ◽  
Isaac Nongwe ◽  
Bonakele P Mtolo ◽  
Boitumelo J Matsoso ◽  
...  

Core–shell based nanostructures are attractive candidates for photocatalysis owing to their tunable physicochemical properties, their interfacial contact effects, and their efficacy in charge-carrier separation. This study reports, for the first time, on the synthesis of mesoporous silica@nickel phyllosilicate/titania (mSiO2@NiPS/TiO2) core–shell nanostructures. The TEM results showed that the mSiO2@NiPS composite has a core–shell nanostructure with a unique flake-like shell morphology. XPS analysis revealed the successful formation of 1:1 nickel phyllosilicate on the SiO2 surface. The addition of TiO2 to the mSiO2@NiPS yielded the mSiO2@NiPS/TiO2 composite. The bandgap energy of mSiO2@NiPS and of mSiO2@NiPS/TiO2 were estimated to be 2.05 and 2.68 eV, respectively, indicating the role of titania in tuning the optoelectronic properties of the SiO2@nickel phyllosilicate. As a proof of concept, the core–shell nanostructures were used as photocatalysts for the degradation of methyl violet dye and the degradation efficiencies were found to be 72% and 99% for the mSiO2@NiPS and the mSiO2@NiPS/TiO2 nanostructures, respectively. Furthermore, a recyclability test revealed good stability and recyclability of the mSiO2@NiPS/TiO2 photocatalyst with a degradation efficacy of 93% after three cycles. The porous flake-like morphology of the nickel phyllosilicate acted as a suitable support for the TiO2 nanoparticles. Further, a coating of TiO2 on the mSiO2@NiPS surface greatly affected the surface features and optoelectronic properties of the core–shell nanostructure and yielded superior photocatalytic properties.


2019 ◽  
Vol 271 ◽  
pp. 246-252 ◽  
Author(s):  
Jiawang Ma ◽  
Zirui Ma ◽  
Beibei Liu ◽  
Shuo Wang ◽  
Ruixin Ma ◽  
...  

2007 ◽  
Vol 111 (24) ◽  
pp. 8463-8468 ◽  
Author(s):  
Xiaomiao Feng ◽  
Haiping Huang ◽  
Qingqing Ye ◽  
Jun-Jie Zhu ◽  
Wenhua Hou

Sign in / Sign up

Export Citation Format

Share Document