photocatalytic reaction
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 90)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Qana A. Alsulami ◽  
A. Rajeh ◽  
Mohammed A. Mannaa ◽  
Soha M. Albukhari ◽  
Doaa F. Baamer

Abstract The study used a one-step hydrothermal method to prepare Fe3O4-FeVO4 and xRGO/Fe3O4-FeVO4 nanocomposites. XRD, TEM, EDS, XPS, DRS, and PL techniques were used to examine the structurally and morphologically properties of the prepared samples. The XRD results appeared that the Fe3O4-FeVO4 has a triclinic crystal structure. Under hydrothermal treatment, (GO) was effectively reduced to (RGO) as illustrated by XRD and XPS results. UV-Vis analysis revealed that the addition of RGO enhanced the absorption in the visible region and narrowed the band gap energy. The photoactivities of the prepared samples were evaluated by degrading methylene blue (MB), phenol and brilliant green (BG) under sunlight illumination. As indicated by all the nanocomposites, photocatalytic activity was higher than the pure Fe3O4-FeVO4 photocatalyst, and the highest photodegradation efficiency of MB and phenol was shown by the 10%RGO/Fe3O4-FeVO4. In addition, the study examined the mineralization (TOC), photodegradation process, and photocatalytic reaction kinetics of MB and phenol.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 336
Author(s):  
Lisheng Zhang ◽  
Xueyan Wang ◽  
Yiyuan Zhang

Surface-enhanced Raman scattering (SERS) is a promising technique to study the plasma-driven photocatalytic reactions. Hemispherical alumina nanoarrays with a regular hexagonal arrangement are firstly prepared; then, silver hemispherical nanoarrays are synthesized on the surface of the arrays by silver evaporation. When a laser with a specific wavelength (633 nm) is irradiated on the silver nanoarrays, a large number of regularly arranged local surface plasmon enhancement regions (called “hot spots”) would be generated on its surface. After that, a layer of evenly distributed p-aminothiophenol (PATP) probe molecules was placed on the substrate and the photocatalytic reaction of PATP was driven by the local surface plasmon to form four 4′-di-mercaptoazobenzene (DMAB). Then, under the same experimental conditions, the later product was reversely reacted to form PATP molecule by the action of plasma in the presence of in situ sodium borohydride. SERS can be used to monitor the whole process of the photocatalytic reaction of PATP probe molecules driven by the plasma on the surface of the silver nanoarrays. This research achieves the drawing and erasing of molecular graphics in the micro- and nano-scales, as well as information encryption, reading, and erasing that have strong application value.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1163
Author(s):  
Jae Keon Kim ◽  
Seung Deok Kim ◽  
Jae Yong Lee ◽  
Chang Hee Kim ◽  
Hyeon-Su Lee ◽  
...  

Powerful sunlight, a high water temperature, and stagnation in the water flow induce eutrophication in rivers and lakes, which destroys the aquatic ecosystem and threatens the downstream water supply systems. Accordingly, it is very important to perform real-time measurements of nutrients that induce algal growth, especially total phosphorus, to preserve and manage the aquatic ecosystem. To conduct quantitative analysis of the total phosphorus in the aquatic ecosystem, it is essential to perform a pretreatment process and quickly separate the phosphorus, combined with organic and inorganic materials, into a phosphate. In this study, the sandblasting process was used for the physical etching of the wafer, and photocatalytic materials were deposited on the surface with various roughness in order to improve the photocatalytic reaction surface and efficiency. The photocatalytic reaction was applied to combine the pretreated sample with the coloring agent for color development, and the absorbance of the colored sample was analyzed quantitatively to compare and evaluate the characteristics, followed by the surface increase in the photocatalytic materials. In addition, the pretreatment and measurement parts were materialized in a single chip to produce a small and light total phosphorus analysis sensor.


2021 ◽  
Author(s):  
Mark J. P. Mandigma ◽  
Jonas Zurauskas ◽  
Callum I. MacGregor ◽  
Lee J. Edwards ◽  
Ahmed Shahin ◽  
...  

We report an organophotocatalytic, N-CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for processing in flow which allowed harnessing of O2 as a benign reagent for late-stage photocatalytic N-CH3 oxidation of natural products and active pharmaceutical ingredients. These substrates bear functional groups which are not tolerated by previous methods. The organophotocatalytic process benefited from the flow parameters, affording cleaner reactions in short residence time of 13.5 mins and productivities of up to 0.65 g / day. Mechanistic studies found that catalyst derivatization not only enhanced solubility of the new catalyst compared to DCA, it profoundly diverted the photocatalytic reaction mechanism from singlet electron transfer (SET) reductive quenching with amines to energy transfer (EnT) with O2.


2021 ◽  
Vol 9 ◽  
Author(s):  
Manh-Cuong Le ◽  
Thu-Huong Le ◽  
Thanh-Huyen Bui Thi ◽  
Quang-Dat Nguyen ◽  
Thanh-Ha Do Thi ◽  
...  

The TiO2/SiO2 nanocomposite has been synthesized by a sol-gel method and investigated the effect of the SiO2 content (0, 5, 10, 15, 20, and 50%) on the rutile-to-anatase phase transition of TiO2 NPs. In order to increase the photocatalytic efficiency of the nanocomposite and decrease the price of material, the TiO2/SiO2 Nc with content SiO2 of 15% sample is chosen for preparing silicate coating. The efficiency of photocatalytic MB and antibacterial ability in the air of W silicate coating (adding TiO2/SiO2 Nc (15%)) achieve almost 100% for 60 h and 94.35% for 3 h, respectively. While the efficiency of photocatalytic MB and antibacterial ability of WO silicate coating (adding commercial TiO2/SiO2) is about 25–30% for 60 h and 6.02% for 3 h, respectively. The presence of TiO2/SiO2 Nc (15%) with a larger surface area in W silicate coating can provide increased centers for absorption, photocatalytic reaction, and the contact between sample and bacteria lead to enhance the photocatalytic and antibacterial ability of W silicate coating.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1115
Author(s):  
Lujia Ding ◽  
Qiutong Han ◽  
Hong Lu ◽  
Yong Yang ◽  
Gang Lu ◽  
...  

Atomic valence state regulation is an advantageous approach for improving photocatalytic efficiency and product selectivity. However, it is difficult to precisely control the ratio of the different valence states on the surface and the relationship between the surface valence change and catalytic efficiency in the photocatalytic reaction process is unclear. Herein, CeVO4 ultrathin nanosheets were fabricated by one-step solvothermal method with ethanolamine (MEA) as the structure-directing agent. The ratio of the concentrations of intrinsic Ce4+ and Ce3+ ions is precisely modulated from 19.82:100 to 13.33:100 changed by the volume of MEA added without morphology modification. The photocatalytic efficiency increases as the concentrations of intrinsic Ce4+ and Ce3+ ions decrease and CV3 (prepared with 3 mL of MEA) shows the highest CO generation rate approximately 6 and 14 times larger than CV (prepared without MEA) and CV1 (prepared with 1 mL of MEA), respectively, in the photocatalytic CO2 reduction. Interestingly, about 6.8% photo-induced Ce4+ ions were generated on the surface of the catalysts during the photocatalytic CO2 reduction without any phase and morphology changes for CV3. The photocatalytic reaction mechanism is proposed considering the intrinsic and photo-induced Ce4+ ions to obtain efficient photocatalysts.


Author(s):  
Anukorn Phuruangrat ◽  
Areerat Nunpradit ◽  
Thawatchai Sakhon ◽  
Phattranit Dumrongrojthanath ◽  
Nuengruethai Ekthammathat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document