On the effectiveness of weighted moving windows: Experiment on linear regression based software effort estimation

2014 ◽  
Vol 27 (7) ◽  
pp. 488-507 ◽  
Author(s):  
S. Amasaki ◽  
C. Lokan
Author(s):  
Fatih Yücalar ◽  
Deniz Kilinc ◽  
Emin Borandag ◽  
Akin Ozcift

Estimating the development effort of a software project in the early stages of the software life cycle is a significant task. Accurate estimates help project managers to overcome the problems regarding budget and time overruns. This paper proposes a new multiple linear regression analysis based effort estimation method, which has brought a different perspective to the software effort estimation methods and increased the success of software effort estimation processes. The proposed method is compared with standard Use Case Point (UCP) method, which is a well-known method in this area, and simple linear regression based effort estimation method developed by Nassif et al. In order to evaluate and compare the proposed method, the data of 10 software projects developed by four well-established software companies in Turkey were collected and datasets were created. When effort estimations obtained from datasets and actual efforts spent to complete the projects are compared with each other, it has been observed that the proposed method has higher effort estimation accuracy compared to the other methods.


2021 ◽  
Vol 6 (2) ◽  
pp. 167-174
Author(s):  
Abdul Latif ◽  
Lady Agustin Fitriana ◽  
Muhammad Rifqi Firdaus

Software development involves several interrelated factors that influence development efforts and productivity. Improving the estimation techniques available to project managers will facilitate more effective time and budget control in software development. Software Effort Estimation or software cost/effort estimation can help a software development company to overcome difficulties experienced in estimating software development efforts. This study aims to compare the Machine Learning method of Linear Regression (LR), Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Decision Tree Random Forest (DTRF) to calculate estimated cost/effort software. Then these five approaches will be tested on a dataset of software development projects as many as 10 dataset projects. So that it can produce new knowledge about what machine learning and non-machine learning methods are the most accurate for estimating software business. As well as knowing between the selection between using Particle Swarm Optimization (PSO) for attributes selection and without PSO, which one can increase the accuracy for software business estimation. The data mining algorithm used to calculate the most optimal software effort estimate is the Linear Regression algorithm with an average RMSE value of 1603,024 for the 10 datasets tested. Then using the PSO feature selection can increase the accuracy or reduce the RMSE average value to 1552,999. The result indicates that, compared with the original regression linear model, the accuracy or error rate of software effort estimation has increased by 3.12% by applying PSO feature selection


Sign in / Sign up

Export Citation Format

Share Document