effort estimation
Recently Published Documents


TOTAL DOCUMENTS

1174
(FIVE YEARS 275)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Anupama Kaushik ◽  
Prabhjot Kaur ◽  
Nisha Choudhary ◽  
Priyanka

2022 ◽  
pp. 1652-1665
Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakashima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii

This paper discusses the effect of classification in estimating the amount of effort (in man-days) associated with code development. Estimating the effort requirements for new software projects is especially important. As outliers are harmful to the estimation, they are excluded from many estimation models. However, such outliers can be identified in practice once the projects are completed, and so they should not be excluded during the creation of models and when estimating the required effort. This paper presents classifications for embedded software development projects using an artificial neural network (ANN) and a support vector machine. After defining the classifications, effort estimation models are created for each class using linear regression, an ANN, and a form of support vector regression. Evaluation experiments are carried out to compare the estimation accuracy of the model both with and without the classifications using 10-fold cross-validation. In addition, the Games-Howell test with one-way analysis of variance is performed to consider statistically significant evidence.


Author(s):  
Naveen Malik, Sandip Kumar Goyal

Cost, time and quality projection are the crucial aspects in software development process. Incorrect estimations can cause losses which in turn may lead to irreversible damage. It is generally perceived that a imperfectly estimated project always results in a substandard quality due to the efforts being wrongly directed. Firstly Effort Estimation is calculated by actual effort and proposed Effort. That Effort evaluation of 500 NASA projects, after that evaluation is done by four parameters Standard Error, Standard Deviation, Mean Absolute Error, Root Mean Square Error. The author amalgamated the robustness of COCOMO-II with that of Neural Network NN and Support Vector Machine SVM .Quality Which we evaluate that is quality Evaluation of Semantic Web Application. In the last checks the majority of all four parameters for software quality assessment.


2022 ◽  
pp. 306-328
Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.


2022 ◽  
pp. 165-193
Author(s):  
Kamlesh Dutta ◽  
Varun Gupta ◽  
Vachik S. Dave

Prediction of software development is the key task for the effective management of any software industry. The accuracy and reliability of the prediction mechanisms used for the estimation of software development effort is also important. A series of experiments are conducted to gradually progress towards the improved accurate estimation of the software development effort. However, while conducting these experiments, it was found that the size of the training set was not sufficient to train a large and complex artificial neural network (ANN). To overcome the problem of the size of the available training data set, a novel multilayered architecture based on a neural network model is proposed. The accuracy of the proposed multi-layered model is assessed using different criteria, which proves the pre-eminence of the proposed model.


2022 ◽  
pp. 123-164
Author(s):  
Syed Mohsin Saif

The recent advancements in information and communication technology (ICT) have inspired all the operational domains of both public and private sector enterprise to endorse this technology. Software development plays a crucial role in supporting ICT. Software effort estimation serves as a critical factor in software application development, and it helps application development teams to complete the development process on time and within budget. Many developmental approaches have been used for software effort estimation, but most of them were conventional software methods and therefore failed to produce accurate results when it came to web or mobile effort estimation. This chapter explains different types of software applications, software estimation models, the importance of software effort estimation, and challenges faced in software effort estimation.


Author(s):  
Sucianna Ghadati Rabiha ◽  
Harco Leslie Hendric Spits Warnars ◽  
Ford Lumban Gaol ◽  
Benfano Soewito

Sign in / Sign up

Export Citation Format

Share Document