Strain Hardening Behavior Prediction Model For Automotive High Strength Multiphase Steels

2015 ◽  
Vol 86 (12) ◽  
pp. 1574-1582 ◽  
Author(s):  
Antonella Dimatteo ◽  
Valentina Colla ◽  
Gianfranco Lovicu ◽  
Renzo Valentini
2014 ◽  
Vol 788 ◽  
pp. 17-22 ◽  
Author(s):  
Bo Song ◽  
Ren Long Xin ◽  
Gang Chen ◽  
Ke Zeng ◽  
Guang Jie Huang ◽  
...  

The high strength of Mg-Y-Nd alloy has been achieved primarily by precipitation hardening. Therefore, it is important to investigate the influence of various precipitate phases on the tensile properties of Mg-Y-Nd alloys. In this study, an extruded Mg-Y-Nd alloy was aged at various temperatures to examine the hardening behaviors. The results showed that the as-extruded alloy exhibited remarkable age hardening response at 210°C due to the precipitation of β’, and slight hardening response at 150°C and 280°C due to the precipitation of β’’ and β, respectively. Furthermore, different precipitates exerted different effects on the tensile properties. In comparison with the as-extruded alloy, the yield strength of the alloys aged at 210 °C and 150 °C was increased by 21 MPa and 8 MPa, respectively, whereas the yield strength of the alloy aged at 280°C was decreased by 30 MPa. The elongation of the alloy aged at 210°C and 150°C was also largely reduced by 3.4% and 2.9%, respectively, while the elongation of the alloy aged at 280°C was only slightly reduced (6.3%). Moreover, compared with the as-extruded alloy, the alloy aged at 210°C and 150°C exhibited lower hardening capacity and higher strain hardening rate at the initial stage, but the strain hardening rate decreased more quickly with the increasing stress. The alloy aged at 280°C exhibited similar strain hardening behavior with the as-extruded alloy. The results in this study provide guidelines for determining the heat treatment parameters for the Mg-Y-Nd alloys to improve their tensile properties.


2021 ◽  
pp. 160623
Author(s):  
Bo Guan ◽  
Yitao Wang ◽  
Jianbo Li ◽  
Yu Zhang ◽  
Hao Wang ◽  
...  

2013 ◽  
Vol 61 (2) ◽  
pp. 494-510 ◽  
Author(s):  
David R. Steinmetz ◽  
Tom Jäpel ◽  
Burkhard Wietbrock ◽  
Philip Eisenlohr ◽  
Ivan Gutierrez-Urrutia ◽  
...  

2005 ◽  
Vol 04 (04) ◽  
pp. 745-751 ◽  
Author(s):  
A. V. NAGASEKHAR ◽  
TICK-HON YIP ◽  
S. LI

Equal channel angular extrusion/pressing multipass simulations were carried for two routes, Route A and Route C, by using finite element code Abaqus/Explicit. Realistic parameters like strain hardening behavior of material, friction between the sample and die were considered for simulations. The strain homogeneity and deformation behavior of samples during multipass ECAE with different routes were studied. The deformation behavior of the sample processed through Route A is smooth. Accordingly strain homogeneity of the samples was more of a possibility with Route A than with Route C.


Sign in / Sign up

Export Citation Format

Share Document