Multimode cable vibration control using a viscous‐shear damper: Case studies on the Sutong Bridge

2020 ◽  
Vol 27 (6) ◽  
Author(s):  
Lin Chen ◽  
Fangdian Di ◽  
Yuyuan Xu ◽  
Limin Sun ◽  
Yingmei Xu ◽  
...  
2021 ◽  
Vol 26 (2) ◽  
pp. 04020119
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Weiming Kong ◽  
Yingmei Xu ◽  
Hui Li

2009 ◽  
Vol 42 (13) ◽  
pp. 141-146
Author(s):  
Maciej Rosół ◽  
Krzysztof Kołek

2011 ◽  
Vol 243-249 ◽  
pp. 5427-5434
Author(s):  
Hui Qian ◽  
Hong Nan Li ◽  
Di Cui ◽  
Huai Chen

Shape memory alloys (SMAs) are unique class materials that have the ability to undergo large deformations, while returning to their undeformed shape through either the applications of heat (SME) or removal of stress (SE). The unique properties lead to their wide applications in the biomedical, mechanical, aerospace, commercial industries, and recently in civil engineering. The paper presents two case studies of structural seismic vibration control using SMAs. The first one is a study of the SMA reinforced RC members. Two innovative applications in RC members, such as SMA-based Precast Concrete Frame Connection (SMA-PCFC), and SMA reinforced RC short column, were proposed. Moreover, the self-rehabilitation properties of SMAs-based Intelligent Reinforced Concrete Beams (SMA-IRCBs) were further experimentally investigated. The results show that SMAs can improve the mechanical properties of concrete members. SMA reinforced RC members have unique seismic performance compared to ordinarily steel reinforced concrete members. The second one is a study of the structural energy dissipation system using SMAs damping device. An innovative hybrid SMAs friction device (HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices (FD) was presented. The results of cyclic tensile tests show that the HSMAFD exhibits stable large energy dissipation capacity and re-centering feature. The effectiveness of the HSMAFD in reducing horizontal response of structures subjected to strong seismic excitations was verified through shaking table tests carried out on a reduced-scale symmetric steel frame model with and without the HSMAFD.


Sign in / Sign up

Export Citation Format

Share Document