Satellite cell activation and retention of muscle regenerative potential after long-term denervation

Stem Cells ◽  
2020 ◽  
Vol 39 (3) ◽  
pp. 331-344
Author(s):  
Alvin Wong ◽  
Steven M. Garcia ◽  
Stanley Tamaki ◽  
Katharine Striedinger ◽  
Emilie Barruet ◽  
...  

Author(s):  
Alessandra Renzini ◽  
Anna Benedetti ◽  
Marina Bouché ◽  
Leopoldo Silvestroni ◽  
Sergio Adamo ◽  
...  

Single myofiber isolation protocols allow to obtain an in vitro system in which the physical association between the myofiber and its stem cells, the satellite cells, is adequately preserved. This technique is an indispensable tool by which the muscle regeneration process can be recapitulated and studied in each specific phase, from satellite cell activation to proliferation, from differentiation to fusion. This study aims to clarify the effect of different culture conditions on single myofibers, their associated satellite cells, and the physiological behavior of the satellite cells upon long term culture. By direct observations of the cultures, we compared different experimental conditions and their effect on both satellite cell behavior and myofiber viability.



2018 ◽  
Vol 233 (5) ◽  
pp. 4360-4372 ◽  
Author(s):  
Maria Guitart ◽  
Josep Lloreta ◽  
Laura Mañas-Garcia ◽  
Esther Barreiro


Author(s):  
Gerben J. Schaaf ◽  
Tom JM van Gestel ◽  
Esther Brusse ◽  
Robert M. Verdijk ◽  
Irenaeus FM de Coo ◽  
...  


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Theodora Pavlidou ◽  
Milica Marinkovic ◽  
Marco Rosina ◽  
Claudia Fuoco ◽  
Simone Vumbaca ◽  
...  

The regeneration of the muscle tissue relies on the capacity of the satellite stem cell (SC) population to exit quiescence, divide asymmetrically, proliferate, and differentiate. In age-related muscle atrophy (sarcopenia) and several dystrophies, regeneration cannot compensate for the loss of muscle tissue. These disorders are associated with the depletion of the satellite cell pool or with the loss of satellite cell functionality. Recently, the establishment and maintenance of quiescence in satellite cells have been linked to their metabolic state. In this work, we aimed to modulate metabolism in order to preserve the satellite cell pool. We made use of metformin, a calorie restriction mimicking drug, to ask whether metformin has an effect on quiescence, proliferation, and differentiation of satellite cells. We report that satellite cells, when treated with metformin in vitro, ex vivo, or in vivo, delay activation, Pax7 downregulation, and terminal myogenic differentiation. We correlate the metformin-induced delay in satellite cell activation with the inhibition of the ribosome protein RPS6, one of the downstream effectors of the mTOR pathway. Moreover, in vivo administration of metformin induces a belated regeneration of cardiotoxin- (CTX-) damaged skeletal muscle. Interestingly, satellite cells treated with metformin immediately after isolation are smaller in size and exhibit reduced pyronin Y levels, which suggests that metformin-treated satellite cells are transcriptionally less active. Thus, our study suggests that metformin delays satellite cell activation and differentiation by favoring a quiescent, low metabolic state.



2018 ◽  
Vol 1 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Alanna Klose ◽  
Wenxuan Liu ◽  
Nicole D. Paris ◽  
Sophie Forman ◽  
John J. Krolewski ◽  
...  


1995 ◽  
Vol 242 (3) ◽  
pp. 329-336 ◽  
Author(s):  
S. C. J. M. Jacobs ◽  
J. H. J. Wokke ◽  
P. R. Bär ◽  
A. L. Bootsma


1987 ◽  
Vol 63 (5) ◽  
pp. 1816-1821 ◽  
Author(s):  
K. C. Darr ◽  
E. Schultz

The time course and extent of satellite cell activation were studied in the soleus (m-SOL) and extensor digitorum longus (m-EDL) muscles of untrained growing and mature rats after a single bout of prolonged eccentric treadmill running. At 24, 48, 72, and 120 h postexercise, satellite cell mitotic activity was quantitated in autoradiographs of whole-fiber segments after injection of [3H]thymidine. Fiber damage and localization of labeled cells were also examined in muscle cross sections. Labeling in growing muscles progressively increased to peak levels (approximately 250% of control) at 72 h postexercise, whereas mature muscles exhibited an earlier peak (approximately 250% of control) at 24 (m-SOL) and 48 (m-EDL) h, followed by a more rapid decline to control levels by 120 h postexercise. In all exercised muscles the calculated satellite cell activation was far greater than required to repair the small number (less than 3.0%) of necrotic fibers identified at the light-microscopic level. These results suggest that satellite cells were activated not only on fibers exhibiting overt necrosis but also on those with lesions not discernible with light microscopy.



Sign in / Sign up

Export Citation Format

Share Document