Evaluating online control of goal-directed arm movement while standing in virtual visual environment

2003 ◽  
Vol 14 (5) ◽  
pp. 253-260 ◽  
Author(s):  
Olivier Martin ◽  
Benjamin Julian ◽  
Laurence Boissieux ◽  
Jean-Dominique Gascuel ◽  
Claude Prablanc
2009 ◽  
Vol 35 (2) ◽  
pp. 177-182 ◽  
Author(s):  
B. N. Smetanin ◽  
G. V. Kozhina ◽  
A. K. Popov

2009 ◽  
Vol 06 (02) ◽  
pp. 91-97
Author(s):  
MUHAMMAD USMAN KEERIO ◽  
YUEPIN LU

In the case of dark/bad light environments cameras cannot shoot images clearly for the operator to complete the task. Also, video information from camera or robot vision is not enough for some typical applications like telesurgery to pick up an object. In this paper a novel controlling approach for humanoid teleoperation using virtual reality is presented, such that the robot can work safely and accurately in such circumstances. In this regard the work has been enhanced by developing the virtual/visual environment using joystick control interface for controlling Humanoid BHR-2 motion to complete a task safely and accurately. Software Maya is chosen for this work, which can perform all the vision-related calculations. Experiments are conducted using joystick control commands where the operator controls BHR-2 walking motion while looking at virtual scene on his computer to confirm the effectiveness of novel control technique.


Author(s):  
Jerrold D. Prothero ◽  
Hunter G. Hoffman ◽  
Donald E. Parker ◽  
Thomas A. Furness ◽  
Maxwell J. Wells

A possible relation between vection and presence is discussed. Two experiments examined the hypothesis that “presence” is enhanced by manipulations which facilitate interpreting visual scenes as “background.” A total of 39 participants in two experiments engaged in a pursuit game while in a virtual visual environment generated by an HMD and rated their experience of “presence” on 5 questions. Experiment 1 compared two viewing conditions: visual scene masking at the eye and a paper mask mounted on the screen with the same 60° FOV, and showed that presence was enhanced by eye masking relative to screen masking. Experiment 2 replicated these findings with a double-blind experimental design.


Author(s):  
PETER A. SANDON

Recent related approaches in the areas of vision, motor control and planning are attempting to reduce the computational requirements of each process by restricting the class of problems that can be addressed. Active vision, differential kinematics and reactive planning are all characterized by their minimal use of representations, which simplifies both the required computations and the acquisition of models. This paper describes an approach to visually-guided motor control that is based on active vision and differential kinematics, and is compatible with reactive planning. Active vision depends on an ability to choose a region of the visual environment for task-specific processing. Visual attention provides a mechanism for choosing the region to be processed in a task-specific way. In addition, this attentional mechanism provides the interface between the vision and motor systems by representing visual position information in a 3-D retinocentric coordinate frame. Coordinates in this frame are transformed into eye and arm motor coordinates using kinematic relations expressed differentially. A real-time implementation of these visuomotor mechanisms has been used to develop a number of visually-guided eye and arm movement behaviors.


Author(s):  
Nicolas Poirel ◽  
Claire Sara Krakowski ◽  
Sabrina Sayah ◽  
Arlette Pineau ◽  
Olivier Houdé ◽  
...  

The visual environment consists of global structures (e.g., a forest) made up of local parts (e.g., trees). When compound stimuli are presented (e.g., large global letters composed of arrangements of small local letters), the global unattended information slows responses to local targets. Using a negative priming paradigm, we investigated whether inhibition is required to process hierarchical stimuli when information at the local level is in conflict with the one at the global level. The results show that when local and global information is in conflict, global information must be inhibited to process local information, but that the reverse is not true. This finding has potential direct implications for brain models of visual recognition, by suggesting that when local information is conflicting with global information, inhibitory control reduces feedback activity from global information (e.g., inhibits the forest) which allows the visual system to process local information (e.g., to focus attention on a particular tree).


Sign in / Sign up

Export Citation Format

Share Document