motor systems
Recently Published Documents


TOTAL DOCUMENTS

694
(FIVE YEARS 88)

H-INDEX

50
(FIVE YEARS 5)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 175
Author(s):  
Piotr Bąska ◽  
Luke James Norbury

Helminths are metazoan parasites infecting around 1.5 billion people all over the world. During coevolution with hosts, worms have developed numerous ways to trick and evade the host immune response, and because of their size, they cannot be internalized and killed by immune cells in the same way as bacteria or viruses. During infection, a substantial Th2 component to the immune response is evoked which helps restrain Th1-mediated tissue damage. Although an enhanced Th2 response is often not enough to kill the parasite and terminate an infection in itself, when tightly coordinated with the nervous, endocrine, and motor systems it can dislodge parasites from tissues and expel them from the gut. A significant role in this “weep and seep” response is attributed to intestinal epithelial cells (IEC). This review highlights the role of various IEC lineages (enterocytes, tuft cells, Paneth cells, microfold cells, goblet cells, and intestine stem cells) during the course of helminth infections and summarizes their roles in regulating gut architecture and permeability, and muscle contractions and interactions with the immune and nervous system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dongcheng He ◽  
Haluk Ogmen

Newborns demonstrate innate abilities in coordinating their sensory and motor systems through reflexes. One notable characteristic is circular reactions consisting of self-generated motor actions that lead to correlated sensory and motor activities. This paper describes a model for goal-directed reaching based on circular reactions and exocentric reference-frames. The model is built using physiologically plausible visual processing modules and arm-control neural networks. The model incorporates map representations with ego- and exo-centric reference frames for sensory inputs, vector representations for motor systems, as well as local associative learning that result from arm explorations. The integration of these modules is simulated and tested in a three-dimensional spatial environment using Unity3D. The results show that, through self-generated activities, the model self-organizes to generate accurate arm movements that are tolerant with respect to various sources of noise.


2021 ◽  
pp. 105-114
Author(s):  
Scott D. Eggers

Properly functioning eye movements facilitate a clear, stable view of the environment. Saccadic eye movements and nystagmus fast phases are 2 types of fast eye movements. Slow eye movements include smooth pursuit, vestibular, optokinetic, and vergence. Reflexive and voluntary conjugate eye movements incorporate cortical, subcortical (basal ganglia), and vestibulocerebellar input to the final common pathways of horizontal and vertical eye movements. The present chapter reviews the anatomy and dysfunction of the supranuclear input to conjugate gaze.


2021 ◽  
Vol 22 (21) ◽  
pp. 11759
Author(s):  
Alexandra Gros ◽  
Léandre Lavenu ◽  
Jean-Luc Morel ◽  
Philippe De Deurwaerdère

Microgravity, one of the conditions faced by astronauts during spaceflights, triggers brain adaptive responses that could have noxious consequences on behaviors. Although monoaminergic systems, which include noradrenaline (NA), dopamine (DA), and serotonin (5-HT), are widespread neuromodulatory systems involved in adaptive behaviors, the influence of microgravity on these systems is poorly documented. Using a model of simulated microgravity (SMG) during a short period in Long Evans male rats, we studied the distribution of monoamines in thirty brain regions belonging to vegetative, mood, motor, and cognitive networks. SMG modified NA and/or DA tissue contents along some brain regions belonging to the vestibular/motor systems (inferior olive, red nucleus, cerebellum, somatosensorily cortex, substantia nigra, and shell of the nucleus accumbens). DA and 5-HT contents were reduced in the prelimbic cortex, the only brain area exhibiting changes for 5-HT content. However, the number of correlations of one index of the 5-HT metabolism (ratio of metabolite and 5-HT) alone or in interaction with the DA metabolism was dramatically increased between brain regions. It is suggested that SMG, by mobilizing vestibular/motor systems, promotes in these systems early, restricted changes of NA and DA functions that are associated with a high reorganization of monoaminergic systems, notably 5-HT.


Sign in / Sign up

Export Citation Format

Share Document