upright posture
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 54)

H-INDEX

45
(FIVE YEARS 1)

2022 ◽  
pp. 170-180
Author(s):  
Esra Dogru Huzmeli ◽  
Ozden Gokcek

The trunk is the part of the human body that provides basic mechanical stabilization. It provides strength transmission between the upper and lower body regions. Body control is the ability of the body muscles to maintain the upright posture, to adapt to weight transfers, and to maintain selective trunk and limb movements by maintaining the support surface in static and dynamic postural adjustments. Good proximal trunk control provides better distal limb movements, balance, and functional motion. There are many evaluation methods, devices, and scales for trunk function and performance. 3D kinematic, electromyography, hand-held dynamometer, isokinetic dynamometer, trunk accelerometer are some devices that measure trunk function. The motor assessment scale-trunk subscale, the stroke impairment assessment set- trunk control subscale, trunk control test, trunk impairment scale are the most used scales. This chapter explores the effect of strokes on the trunk.


2021 ◽  
Vol 12 ◽  
Author(s):  
John Waterston ◽  
Luke Chen ◽  
Kate Mahony ◽  
Jamila Gencarelli ◽  
Geoff Stuart

Persistent postural perceptual dizziness (PPPD) is a common chronic vestibular disorder characterized by persistent vestibular symptoms, including postural instability and non-spinning vertigo, which is aggravated by motion, upright posture and moving or complex visual stimuli. In our review of 198 cases seen over a 5 year period, we have confirmed a number of common precipitating conditions for PPPD, including anxiety disorders and vestibular migraine. Vestibular abnormalities, including a unilateral loss of vestibular hypofunction and isolated otolith abnormalities, were found on investigation in just under half the cases. The use of cognitive behavioral therapy (CBT) as a treatment for PPPD resulted in impressive reductions in anxiety and measures of dizziness over follow up periods of up to 6 months.


2021 ◽  
Vol 20 (6) ◽  
pp. 58-66
Author(s):  
Elena P. Ivanova ◽  
Andrey A. Lobanov ◽  
Sergey V. Andronov ◽  
Anatoliy D. Fesyun ◽  
Andrey P. Rachin ◽  
...  

The use of the fresh water aquatic training course, as a more gentle training method, may allow patients to ensure effective restoration of muscle functions responsible for maintaining an upright body position. A more accurate control of the course results can be performed using a virtual analysis carried out using the «Habilect» system that allows to determine the body parts attitude. Aim. To study the effect of training in fresh water using the Habilect system based on the Microsoft Kinect infrared sensor (video stabilometry) on motor functions that contribute to maintaining an upright body posture in patients with mild gait disturbances. Material and methods. An open descriptive study was conducted including 12 patients (7 men, 5 women), aged 40 to 62 years, with upright posture maintaining disorders, which correspond to the functional diagnosis encoded by the ICF «Gait Stereotype Functions» B770.1 – mild violations (5–24%). A group of subjects (n = 12), in addition to basic therapy and training with an exercise therapy instructor, underwent aquatic training in fresh water for two weeks (30 minutes, 6 days a week). Assessment methods: the research was carried out using the Habilect gait video analysis system before and after the rehabilitation course. The χ2 test was used to assess the significance of differences between groups of qualitative variables. When analyzing quantitative variables, the Shapiro-Wilk’s (W) test was performed. For abnormal distribution, the data is in Me format [Q25-Q75]. The Wilcoxon T-test was used to assess the significance of differences in quantitative variables of the two studied groups. The processing of the obtained research results was carried out using the Statistica for Windows, v. 8.0 (StatSoft Inc., USA) and Microsoft Excel (Microsoft, USA). The significance of the differences was considered established at p <0.05. Result and discussion. When examining the amplitude of body deflection along the X-axis before training, they were 3.25 cm [-98 cm; 93.9 cm], after – -9.96 cm [-100.92 cm; -81.96 cm], on the Y-axis before training – -29.01 cm [-29.01 cm; 13.76 cm], after –-30.59 cm [-30.59 cm; 31.09 cm], on the Z-axis before training – 388.1 cm [369.22 cm; 393.39 cm], after training – 380.96 cm [377.98cm, 400.05 cm], deviation of the body movement vector before training 16.45 cm [7.46 cm; 338.67 cm], after training – 324.7 cm [324.7 cm; 342.56 cm]. When examining the amplitude of head deflection along the X-axis before training, they were -0.92 cm [-1.24 cm; -0.92 cm], after – 1.5 cm [-10.19 cm; 2.38 cm], Y-axis before training – 125.33 cm [61.13 cm; 128.94 cm], after – 107.42 cm [52.49 cm; 107.42 cm], along the Z-axis before training – -8.59 cm [-8.97 cm; -5.33 cm], after training – -14.89 cm [-14.89 cm, -3.45cm]. When calculating the increase in deviation (deviations of the main body axes from the initial value) using the Wilcoxon T-test revealed statistically significant deviations in the X-axis (an increase of 306.5%, p = 0.0504), the Z-axis (an increase of 112.68%, p =0.0225) and the Body Angle parameter (an increase of 1973.86% p = 0.0323). When calculating the increase in the deviation of the head axes from the initial value using the Wilcoxon T-test, statistically significant deviations were revealed along the X axis (increase of 163.04%, p = 0.0280), the Y axis (increase of 85.71%, p = 0.0199) and the parameter Z (an increase of 173.34% p = 0.0292). The study revealed a decrease in the body axes deviations amplitude in all 3 planes, which indicates an improvement in the work of all brain parts that are responsible for the coordination of motor functions and their vegetative support, an improvement in functional interaction within individual muscle chains. The reduction in the head and neck muscles in compensatory balancing participation during walking and maintaining a vertical body posture mainly due to the muscles of the lower extremities and pelvis contributes to the prevention of arterial and venous circulation disorders in the head and neck and makes training not only more effective, but also safer. Conclusion. Due to the decrease in the amplitude of deviations along all three axes (Z, Y, X), the course of aquatic training contributes to the correction of upright posture maintaining disorders, a statistically significant decrease in the amplitude of head and neck movements.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8191
Author(s):  
Angélina Bellicha ◽  
Andrés Trujillo-León ◽  
Fabien Vérité ◽  
Wael Bachta

Upright posture control and gait are essential for achieving autonomous daily living activities. Postural control of upright posture relies, among others, on the integration of various sensory information. In this context, light touch (LT) and light grip (LG) of a stationary object provide an additional haptic sensory input that helps to reduce postural sway. When LG was studied through the grasp of a cane, the sensory role of this assistive tool was often limited to a mediation interface. Its role was restricted to transmit the interaction forces between its tip and the ground to the hand. While most studies involve participants standing in an unstable way, such as the tandem stance, in this paper we study LG from a different perspective. We attached a handle of a cane firmly to a stationary support. Thus, we can focus on the role of the hand receptors in the LG mechanism. LG condition was ensured through the tactile information gathered by FSR sensors placed on the handle surface. Moreover, participants involved in our study stood in a usual way. The study involved twelve participants in an experiment composed of two conditions: standing relaxed while lightly gripping an equipped handle attached to the ground, and standing in the same way without gripping the handle. Spatial and frequency analyses confirmed the results reported in the literature with other approaches.


TRAUMA ◽  
2021 ◽  
Vol 22 (5) ◽  
pp. 15-24
Author(s):  
O.A. Tyazhelov ◽  
E.D. Karpinskaya ◽  
D.A. Yurchenko ◽  
A.Yu. Branitskyi

Hip osteoarthritis is one of the most common and disabling conditions affecting the elderly. Coxarthrosis is accompanied by impairment of the amortization properties of cartilage, its thinning and destruction, the appearance of pain syndrome, impaired motor functions due to a decrease in muscle strength and the development of stable flexion-adduction contractures, which change congenital motor programs, and, with a prolonged course of degenerative disease, lead to the formation of pathological habits. Objective: to determine the required strength of the muscles of the lower limb in conditions of limited hip mobility to support an upright posture in double-leg stance. Materials and methods. The work of the muscles of the lower extremities under conditions of restricted hip mobility was simulated using the OpenSim 4.0 software. It is based on the ToyLandingModel, which has contact geometry objects to fix the model on the support area. Four models were created: norm (without limitation of joint mobility), model 2 — adduction of 5°, model 3 — adduction of 7°, flexion of 10°, model 4 — adduction of 10°, flexion of 20°, shortening of the femur bones by 2 cm. Results. It was found that with insignificant adduction contractures of the hip joint, the work of the muscles of the lower limb changes slightly during double-leg stance. With flexion-adduction contractures, changes are observed in almost all muscles of the lower limb. There are some peculiarities in the work of muscles under contractures. All the muscles around the thigh reduce the strength necessary to maintain balance, while the lower leg muscles, on the contrary, increase the required strength several times. For example, m.medial gastrocnemius with flexion-adduction contracture and limb shortening develops10 times higher compensatory force (200 N) than in normal conditions (20 N), and although muscle resources are 1500 N, it is very demanding to maintain an upright posture. Similarly, m.tibialis posterior require an increase in strength (threefold), but the antagonist muscle m.tibialis anterior, on the contrary, reduces the force of contraction by an average of 100 N. Conclusions. According to the data of the conducted modeling of double-leg stance with limited hip mobility, it was proved that an increase in limited movements changes the nature of muscle contraction of the entire lower limb and pelvis. The analysis of the obtained results showed that restriction of movements reduces the required force of muscle stabilization around the hip joint, and increases the required force of contraction of the leg muscles. That is, there is an imbalance in the muscles.


2021 ◽  
Author(s):  
Ko-Ting Chen ◽  
Sheng-Yao Huang ◽  
Yi-Jye Chen

Abstract Purpose of ReviewAstasia refers to the inability to maintain upright posture during standing, despite having full motor strength. However, the pathophysiology and neural pathways of astasia remains unclear.Recent FindingsWe analyzed 26, including ours, non-psychogenic astasia patients in English literature. Seventy-three percent of them were man, 73% were associated with other neurologic symptoms and 62% of reported lesions were at right side. Contralateral lateropulsion was very common followed by retropulsion while describing astasia. Infarction (54%) was the most commonly reported cause. Thalamus (65%) was the most commonly reported location. Infarction being the mostly likely to recover (mean:10.6 days), while lesions at brainstem had longer time to recover (mean: 61.6 days).SummaryThe underlying interrupted pathway may be the primary graviceptive system, which composed of at least five unilateral and contralateral projection fibers from vestibular nuclei to thalamic nuclei, and thalamo-cortical projections including subcortical white matter tracts and cortical areas.


2021 ◽  
Author(s):  
Alejandro Gonzalez ◽  
Antonio Cardenas ◽  
Mauro Maya ◽  
Davide Piovesan
Keyword(s):  

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ekaterina Stansfield ◽  
Barbara Fischer ◽  
Nicole D. S. Grunstra ◽  
Maria Villa Pouca ◽  
Philipp Mitteroecker

Abstract Background The human foetus typically needs to rotate when passing through the tight birth canal because of the complex shape of the pelvis. In most women, the upper part, or inlet, of the birth canal has a round or mediolaterally oval shape, which is considered ideal for parturition, but it is unknown why the lower part of the birth canal has a pronounced anteroposteriorly oval shape. Results Here, we show that the shape of the lower birth canal affects the ability of the pelvic floor to resist the pressure exerted by the abdominal organs and the foetus. Based on a series of finite element analyses, we found that the highest deformation, stress, and strain occur in pelvic floors with a circular or mediolaterally oval shape, whereas an anteroposterior elongation increases pelvic floor stability. Conclusions This suggests that the anteroposterior oval outlet shape is an evolutionary adaptation for pelvic floor support. For the pelvic inlet, by contrast, it has long been assumed that the mediolateral dimension is constrained by the efficiency of upright locomotion. But we argue that the mediolateral elongation has evolved because of the limits on the anteroposterior diameter imposed by upright posture. We show that an anteroposteriorly deeper inlet would require greater pelvic tilt and lumbar lordosis, which compromises spine health and the stability of upright posture. These different requirements of the pelvic inlet and outlet likely have led to the complex shape of the pelvic canal and to the evolution of rotational birth characteristic of humans.


Author(s):  
Tito Bassani ◽  
Andrea Cina ◽  
Dominika Ignasiak ◽  
Noemi Barba ◽  
Fabio Galbusera

A major clinical challenge in adolescent idiopathic scoliosis (AIS) is the difficulty of predicting curve progression at initial presentation. The early detection of progressive curves can offer the opportunity to better target effective non-operative treatments, reducing the need for surgery and the risks of related complications. Predictive models for the detection of scoliosis progression in subjects before growth spurt have been developed. These models accounted for geometrical parameters of the global spine and local descriptors of the scoliotic curve, but neglected contributions from biomechanical measurements such as trunk muscle activation and intervertebral loading, which could provide advantageous information. The present study exploits a musculoskeletal model of the thoracolumbar spine, developed in AnyBody software and adapted and validated for the subject-specific characterization of mild scoliosis. A dataset of 100 AIS subjects with mild scoliosis and in pre-pubertal age at first examination, and recognized as stable (60) or progressive (40) after at least 6-months follow-up period was exploited. Anthropometrical data and geometrical parameters of the spine at first examination, as well as biomechanical parameters from musculoskeletal simulation replicating relaxed upright posture were accounted for as predictors of the scoliosis progression. Predicted height and weight were used for model scaling because not available in the original dataset. Robust procedure for obtaining such parameters from radiographic images was developed by exploiting a comparable dataset with real values. Six predictive modelling approaches based on different algorithms for the binary classification of stable and progressive cases were compared. The best fitting approaches were exploited to evaluate the effect of accounting for the biomechanical parameters on the prediction of scoliosis progression. The performance of two sets of predictors was compared: accounting for anthropometrical and geometrical parameters only; considering in addition the biomechanical ones. Median accuracy of the best fitting algorithms ranged from 0.76 to 0.78. No differences were found in the classification performance by including or neglecting the biomechanical parameters. Median sensitivity was 0.75, and that of specificity ranged from 0.75 to 0.83. In conclusion, accounting for biomechanical measures did not enhance the prediction of curve progression, thus not supporting a potential clinical application at this stage.


Sign in / Sign up

Export Citation Format

Share Document