Comparison of the near-wake between actuator-line simulations and a simplified vortex model of a horizontal-axis wind turbine

Wind Energy ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 471-481 ◽  
Author(s):  
Sasan Sarmast ◽  
Antonio Segalini ◽  
Robert F. Mikkelsen ◽  
Stefan Ivanell
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3900 ◽  
Author(s):  
Jing Dong ◽  
Axelle Viré ◽  
Carlos Simao Ferreira ◽  
Zhangrui Li ◽  
Gerard van Bussel

A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine, which is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method with straight lifting lines assumption. By contrast, the far wake model is based on the vortex ring method. The proposed model is a good compromise between accuracy and computational cost, for example when compared with more complex vortex methods. The present model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5 MW NREL rotor and compared with other aerodynamic models for the same rotor subjected to different platform motions. The results show that the proposed method is reliable. In addition, the proposed method is less time consuming and has similar accuracy when comparing with more advanced vortex based methods.


Wind Energy ◽  
2015 ◽  
Vol 19 (7) ◽  
pp. 1249-1267 ◽  
Author(s):  
Pooyan Hashemi Tari ◽  
Kamran Siddiqui ◽  
Horia Hangan

2013 ◽  
Vol 718-720 ◽  
pp. 1811-1815 ◽  
Author(s):  
Xiang Gao ◽  
Jun Hu ◽  
Zhi Qiang Wang

A three-dimensional horizontal axis wind turbine model was experimentally studied. The experiment was carried out in a laboratory wind tunnel. With PIV measurement, details about flow fields in the near wakeof the turbine blade were obtained. The result shows vortices generateon the tailing edge of the blade, and propagatedownstream then dissipate into small vortices. Vortices also generate at the tip of the blade, propagate downstream and along the radial direction then dissipate. The dissipation of the tip vortex is slower than the former. We also find that the wake of turbine blade rotates in the opposite direction of the blade.


Wind Energy ◽  
2011 ◽  
Vol 15 (5) ◽  
pp. 743-756 ◽  
Author(s):  
Per-Åge Krogstad ◽  
Muyiwa S. Adaramola

Sign in / Sign up

Export Citation Format

Share Document