Review for "Effect of platform disturbance on the performance of offshore wind turbine under pitch control"

Author(s):  
Toshiki Chujo ◽  
Yoshimasa Minami ◽  
Tadashi Nimura ◽  
Shigesuke Ishida

The experimental proof of the floating wind turbine has been started off Goto Islands in Japan. Furthermore, the project of floating wind farm is afoot off Fukushima Prof. in north eastern part of Japan. It is essential for realization of the floating wind farm to comprehend its safety, electric generating property and motion in waves and wind. The scale model experiments are effective to catch the characteristic of floating wind turbines. Authors have mainly carried out scale model experiments with wind turbine models on SPAR buoy type floaters. The wind turbine models have blade-pitch control mechanism and authors focused attention on the effect of blade-pitch control on both the motion of floater and fluctuation of rotor speed. In this paper, the results of scale model experiments are discussed from the aspect of motion of floater and the effect of blade-pitch control.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shan Zuo ◽  
Y. D. Song ◽  
Lei Wang ◽  
Qing-wang Song

Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.


Author(s):  
Kaman Thapa Magar ◽  
Mark J. Balas

This paper presents the preliminary study on damping of platform pitch motion of floating offshore wind turbine using adaptive individual blade pitch control. The platform pitch displacement is measured and used to derive the signal to actuate pitch of each blade independently which tries to damp the platform pitch motion. This independent blade pitch control signal is then combined with collective blade pitch control signal which is responsible for regulating the generator speed. The performance of proposed controller is compared with the baseline PID collective pitch controller and adaptive collective pitch controller.


2021 ◽  
Vol 172 ◽  
pp. 453-464
Author(s):  
Le Quang Sang ◽  
Qing’an Li ◽  
Chang Cai ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document