Review for "An enhanced analytical model for airfoil‐based shrouded wind turbines"

Author(s):  
Søren Hjort
2021 ◽  
Vol 933 ◽  
Author(s):  
Majid Bastankhah ◽  
Carl R. Shapiro ◽  
Sina Shamsoddin ◽  
Dennice F. Gayme ◽  
Charles Meneveau

Motivated by the need for compact descriptions of the evolution of non-classical wakes behind yawed wind turbines, we develop an analytical model to predict the shape of curled wakes. Interest in such modelling arises due to the potential of wake steering as a strategy for mitigating power reduction and unsteady loading of downstream turbines in wind farms. We first estimate the distribution of the shed vorticity at the wake edge due to both yaw offset and rotating blades. By considering the wake edge as an ideally thin vortex sheet, we describe its evolution in time moving with the flow. Vortex sheet equations are solved using a power series expansion method, and an approximate solution for the wake shape is obtained. The vortex sheet time evolution is then mapped into a spatial evolution by using a convection velocity. Apart from the wake shape, the lateral deflection of the wake including ground effects is modelled. Our results show that there exists a universal solution for the shape of curled wakes if suitable dimensionless variables are employed. For the case of turbulent boundary layer inflow, the decay of vortex sheet circulation due to turbulent diffusion is included. Finally, we modify the Gaussian wake model by incorporating the predicted shape and deflection of the curled wake, so that we can calculate the wake profiles behind yawed turbines. Model predictions are validated against large-eddy simulations and laboratory experiments for turbines with various operating conditions.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Dimitrios G. Pavlou

Abstract The structural design of offshore wind turbines is based on the consideration of coupled dynamic phenomena. Wave loads cause the dynamic oscillation of the monopile, and the dynamic oscillation of the monopile affects the wave loads. The boundary conditions of the gravity-based foundation-monopile-turbine system are mostly affected by the flexural stiffness of the foundation plate, the elastic and creep behavior of the soil, and the inertia (translational and rotational) of the wind turbine mass. The design of the foundation should consider the dynamic response of the soil and the monopile, and the dynamic response of the soil and the monopile is affected by the design parameters of the foundation. The initial conditions of the system yield transient dynamic phenomena. A braking wave at t = 0 causes different dynamic response than the steady-state conditions due to a harmonic wave load. In the present work, an integrated analytical model simulating the above dynamic phenomena is proposed. With the aid of double integral transforms and generalized function properties, a solution of the corresponding differential equations for the monopile-soil-foundation system and the boundary and initial conditions is derived. A parametric study is carried out, and results of the effect of the design parameters and soil properties are presented and discussed.


2020 ◽  
Vol 214 ◽  
pp. 107861
Author(s):  
Renqiang Xi ◽  
Piguang Wang ◽  
Xiuli Du ◽  
Kun Xu ◽  
Chengshun Xu ◽  
...  

Wind Energy ◽  
2020 ◽  
Vol 23 (8) ◽  
pp. 1711-1725 ◽  
Author(s):  
Michael J. Werle

Sign in / Sign up

Export Citation Format

Share Document