Sea breeze and local weather conditions in a coastal Mediterranean mountain setting

Weather ◽  
2014 ◽  
Vol 69 (7) ◽  
pp. 184-190 ◽  
Author(s):  
Carla Mora
Author(s):  
María Laura Bettolli

Global climate models (GCM) are fundamental tools for weather forecasting and climate predictions at different time scales, from intraseasonal prediction to climate change projections. Their design allows GCMs to simulate the global climate adequately, but they are not able to skillfully simulate local/regional climates. Consequently, downscaling and bias correction methods are increasingly needed and applied for generating useful local and regional climate information from the coarse GCM resolution. Empirical-statistical downscaling (ESD) methods generate climate information at the local scale or with a greater resolution than that achieved by GCM by means of empirical or statistical relationships between large-scale atmospheric variables and the local observed climate. As a counterpart approach, dynamical downscaling is based on regional climate models that simulate regional climate processes with a greater spatial resolution, using GCM fields as initial or boundary conditions. Various ESD methods can be classified according to different criteria, depending on their approach, implementation, and application. In general terms, ESD methods can be categorized into subgroups that include transfer functions or regression models (either linear or nonlinear), weather generators, and weather typing methods and analogs. Although these methods can be grouped into different categories, they can also be combined to generate more sophisticated downscaling methods. In the last group, weather typing and analogs, the methods relate the occurrence of particular weather classes to local and regional weather conditions. In particular, the analog method is based on finding atmospheric states in the historical record that are similar to the atmospheric state on a given target day. Then, the corresponding historical local weather conditions are used to estimate local weather conditions on the target day. The analog method is a relatively simple technique that has been extensively used as a benchmark method in statistical downscaling applications. Of easy construction and applicability to any predictand variable, it has shown to perform as well as other more sophisticated methods. These attributes have inspired its application in diverse studies around the world that explore its ability to simulate different characteristics of regional climates.


2019 ◽  
Vol 29 ◽  
pp. 1-16 ◽  
Author(s):  
Jorge Flores-Velazquez ◽  
Federico Villarreal-Guerrero ◽  
Abraham Rojano-Aguilar ◽  
Uwe Schdmith

In some locations with harsh winters, the heat stored in the soil may not be enough to heating a greenhouse, and so artificial heat must be supplied. The objective of this study was to evaluate a numerical model under local weather conditions, in Humboldt University of Berlin, Germany, during winter 2011 to analyze the air dynamics generated through a tube pipe heating system convection in a closed greenhouse, for it to be applicable in producing cold regions in Mexico. Results showed that 100 W m-2 of heat released from the soil kept the environment within acceptable ranges for plant growth from noon to evening. However, the energy lost by long-wave radiation during the night lowered the air temperature to minimal basal temperature. Heat from the pipes placed underneath the crop promoted air movement by convection, producing a uniform distribution of temperature and humidity within the plant canopy.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 838 ◽  
Author(s):  
Christos Zerefos ◽  
Stavros Solomos ◽  
Dimitris Melas ◽  
John Kapsomenakis ◽  
Christos Repapis

The Battle of Salamis in 480 B.C. is one of the most important naval battles of all times. This work examines in detail the climatically prevailing weather conditions during the Persian invasion in Greece. We perform a climatological analysis of the wind regime in the narrow straits of Salamis, where this historic battle took place, based on available station measurements, reanalysis and modeling simulations (ERA5, WRF) spanning through the period of 1960–2019. Our results are compared to ancient sources before and during the course of the conflict and can be summarized as follows: (i) Our climatological station measurements and model runs describing the prevailing winds in the area of interest are consistent with the eyewitness descriptions reported by ancient historians and (ii) The ancient Greeks and particularly Themistocles must have been aware of the local wind climatology since their strategic plan was carefully designed and implemented to take advantage of the diurnal wind variation. The combination of northwest wind during the night and early morning, converging with a south sea breeze after 10:00 A.M., formed a “pincer” that aided the Greeks at the beginning of the clash in the morning, while it brought turmoil to the Persian fleet and prevented them to escape to the open sea in the early afternoon hours.


Weatherwise ◽  
1984 ◽  
Vol 37 (5) ◽  
pp. 253-256 ◽  
Author(s):  
L. Michael Trapasso ◽  
Brian Kinkel

Sign in / Sign up

Export Citation Format

Share Document