heat released
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 69)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Morgane Briand ◽  
Geert Haarlemmer ◽  
Anne Roubaud ◽  
Pascal Fongarland

Hydrothermal liquefaction has proven itself as a promising pathway to the valorisation of low-value wet food residues. The chemistry is complex and many questions remain about the underlying mechanism of the transformation. Little is known about the heat of reaction, or even the thermal effects, of the hydrothermal liquefaction of real biomass and its constituents. This paper explores different methods to evaluate the heat released during the liquefaction of blackcurrant pomace and brewers’ spent grains. Some model compounds have also been evaluated, such as lignin, cellulose and glutamic acid. Exothermic behaviour was observed for blackcurrant pomace and brewers’ spent grains. Results obtained in a continuous reactor are similar to those obtained in a batch reactor. The heat release has been estimated between 1 MJ/kg and 3 MJ/kg for blackcurrant pomace and brewers’ spent grains, respectively. Liquefaction of cellulose and glucose also exhibit exothermic behaviour, while the transformation of lignin and glutamic acid present a slightly endothermic behaviour.


Author(s):  
Quan Tran ◽  
Igor Altman ◽  
Pascal Dube ◽  
Mark Malkoun ◽  
R. Sadangi ◽  
...  

Abstract Off-the-shelf calorimeters are typically used for hydrocarbon-based fuels and not designed for simulating metal powder oxidation in gaseous environments. We have developed a method allowing a typical bomb calorimeter to accurately measure heat released during combustion and achieve nearly 100% of the reference heat of combustion from powder fuels such as aluminum. The modification uses a combustible organic dispersant to suspend the fuel particles and promote more complete combustion. The dispersant is a highly porous organic starch-based material (i.e., packing peanut) and allows the powder to burn as discrete particles thereby simulating dust-type combustion environments. The demonstrated closeness of measured Al heat of combustion to its reference value is evidence of complete metal combustion achieved in our experiment. Beyond calorific output under conditions simulating real reactive systems, we demonstrate that the calorimeter also allows characterization of the temporal heat release from the reacting material and this data can be extracted from the instrument. The rate of heat release is an important additional parameter characterizing the combustion process. The experimental approach described will impact future measurements of heat released during combustion from solid fuel powders and enable scientists to quantify the energetic performance of metal fuel more accurately as well as the transient thermal behavior from combusting metal powders.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Kamel Guedri ◽  
Abdullah A. Abdoon ◽  
Omar S. Bagabar ◽  
Mowffaq Oreijah ◽  
Abdessattar Bouzid ◽  
...  

Tunnel fires are one of the most dangerous catastrophic events that endanger human life. They cause damage to infrastructure because of the limited space in the tunnel, lack of escape facilities, and difficulty that intervention forces have in reaching the fire position, especially in highly crowded areas, such as Makkah in the Hajj season. Unfortunately, performing experimental tests on tunnel fire safety is particularly challenging because of the prohibitive cost, limited possibilities, and losses that these tests can cause. Therefore, large-scale modeling, using fire dynamic simulation, is one of the best techniques used to limit these costs and losses. In the present work, a fire scenario in the Makkah’s King Abdulaziz Road tunnel was analyzed using the Fire Dynamics Simulator (FDS). The effects of the heat released per unit area, soot yield, and CO yield on the gas temperature, radiation, concentrations of the oxygen and combustion products CO and CO2, and air velocity were examined. The results showed that the radiation increased with the heat released per unit area and the soot yield affected all parameters, except the oxygen concentration and air velocity. The CO yield significantly affects CO concentration, and its influence on the other studied parameters is negligible. Moreover, based on the validation part, the results proved that FDS have limitations in tunnel fires, which impact the smoke layer calculation at the upstream zone of the fire. Therefore, the users or researchers should carefully be concerned about these weaknesses when using FDS to simulate tunnel fires. Further comprehensive research is crucial, as tunnel fires have severe impacts on various aspects of people’s lives.


Author(s):  
Irfan Pratantyo ◽  
Gatot Prayogo ◽  
Agus Sunjarianto Pamitran ◽  
Yulianto Sulistyo Nugroho

Smouldering is a slow-burning, low-temperature, flameless combustion, and frequently happens in peatland fires. The smouldering spread occurs because of the parameter achievement in oxygen supply, generated heat, and heat released to the environment. The condition of porous and fibrous peat soils makes oxygen supply easily happens. The difficulty of getting to the location of the burning peatland is one of the problems to extinguish the fire. This study aims to observe with thermal imaging study the effect of peat permeability on smouldering behaviour of a tropical peat sample. Mechanical compaction was applied to reduce permeability and pore value in the central of the peat soil. Then, peat soil is ignited to create the smouldering propagation through the compacted peat area. The combustion process that occurs on the surface is observed by a visual camera and an Infrared FLIR Thermal Camera. The initial results showed a reduction in the smouldering spread rate on the compacted soil region as compared to the undisturbed peat smouldering region. Nevertheless, smouldering combustion of peat still occurred in all regions of the reactor, once the smouldering front could penetrate the compacted region.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012022
Author(s):  
V I Loganina ◽  
M V Zaytseva ◽  
T V Uhaeva

Abstract Information on the effect of a polysilicate solution obtained by mixing liquid glass with a silicic acid sol on the structure formation of lime compositions is presented. It was revealed that the amount of specific heat released when lime is wetted with a polysilicate solution is greater than when lime is wetted with water. This is due to the additionally released heat due to the chemical interaction of lime with polysilicate solution. It was found that the introduction of a polysilicate solution accelerates the development of plastic strength. For comparison, we used liquid glass and a sol of silicic acid as an additive. The synergistic effect of the influence of the polysilicate solution on the structure formation of lime finishing compositions was established, which manifests itself in the acceleration of the set plastic strength in comparison with silica sol and water glass. It has been established that the introduction of a polysilicate solution into the lime mixture formulation contributes to an increase in the resistance to slipping of the finishing layer. The optimal thickness of the finishing layer was determined, which is 20 mm, at which sliding from the vertical surface is not observed.


2021 ◽  
Author(s):  
Sukru Merey ◽  
Tuna Eren ◽  
Can Polat

Abstract Since the 2000s, the number of gas hydrate wells (i.e., exploration wells, production test wells) has increased. Moreover, in the marine environment, gas hydrate zones are drilled in conventional hydrocarbon wells. Different than conventional hydrocarbon wells, the heat released with cement hydration cannot be ignored because gas hydrates are heat sensitive. In this study, by analyzing different cement compositions (conventional cement compositions and novel low-heat of hydration cement), it is aimed to investigate the effect of the heat of cement hydration on gas hydrate zones near the wellbore. For this purpose, numerical simulations with TOUGH+HYDRATE simulator were conducted in the conditions of the Nankai Trough gas hydrates. According to the numerical simulations in this study, if the increase in temperature in the cemented layer is above 30°C, significant gas hydrate dissociation occurs, and free gas evolved in the porous media. This might cause gas channeling and poor cement bond. The heat released with cement hydration generally affects the interval between the cemented layer and 0.25 m away from the cemented layer. Within a few days after cementing, pressure, temperature, gas hydrate saturation, and gas saturation returned to almost their original values.


2021 ◽  
Vol 21 (17) ◽  
pp. 13353-13368
Author(s):  
Enrique Pravia-Sarabia ◽  
Juan José Gómez-Navarro ◽  
Pedro Jiménez-Guerrero ◽  
Juan Pedro Montávez

Abstract. Medicanes are mesoscale tropical-like cyclones that develop in the Mediterranean basin and represent a great hazard for the coastal population. The skill to accurately simulate them is of utmost importance to prevent economical and personal damage. Medicanes are fueled by the latent heat released in the condensation process associated with convective activity, which is regulated by the presence and activation of cloud condensation nuclei, mainly originating from sea salt aerosols (SSAs) for marine environments. Henceforth, the purpose of this contribution is twofold: assessing the effects of an interactive calculation of SSA on the strengthening and persistence of medicanes, and providing insight into the casuistry and sensitivities around their simulation processes. To this end, a set of simulations have been conducted with a chemistry–meteorology coupled model considering prescribed aerosol (PA) and interactive aerosol (IA) concentrations. The results indicate that IA produces longer-lasting and more intense medicanes. Further, the role of the initialization time and nudging strategies for medicane simulations has been explored. Overall, the results suggest that (1) the application of spectral nudging dampens the effects of IA, (2) the initialization time introduces a strong variability in the storm dynamics, and (3) wind–SSA feedback is crucial and should be considered when studying medicanes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
M. Formisano ◽  
M. C. De Sanctis ◽  
C. Federico ◽  
G. Magni ◽  
F. Altieri ◽  
...  

Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.


2021 ◽  
Vol 3 (44) ◽  
pp. 104-110
Author(s):  
Stanislav S. Trunov ◽  
◽  
Dmitriy A. Tikhomirov ◽  
Aleksey V. Khimenko ◽  
Aleksey V. Kuz’michev ◽  
...  

The analysis of technologies and technical means of creating a temperature regime in the piglet location zone, where two different temperature fields must be created in the cold season: one for breeding pigs, the other for suckling piglets. The article considers the question of the use of thermoelectric modules and heat pipes as a source of thermal energy in local heating installations for suckling piglets. (Research purpose) There are proposed the functional and technological scheme of the installation for local heating of young animals with the use of thermoelectric modules and heat pipes. (Materials and methods) In the developed scheme, the thermal energy of the hot circuit of thermoelectric modules is used to heat the site on which the piglets are located. (Results and discussion) The heat of the cold circuit of the thermoelectric module assimilates the thermal energy of the removed ventilation air. For the effective operation of a thermoelectric installation for local heating of piglets, it is necessary that the cooling circuit, which absorbs thermal energy from the environment, be involved in some technological process for heat removal, for example, the heated ventilation air being removed. This leads to a significant increase in the efficiency of thermoelectric modules. At the same time, the installation will operate in the heat pump mode, since the amount of heat released in the heat exchanger of the hot circuit of the thermoelectric assembly exceeds the amount of electricity consumed from the network. (Conclusions) The article presents the sample of a thermoelectric installation was developed and its laboratory tests. The article describes the energy efficiency of the use of thermoelectric modules as energy converters in thermal technological processes.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4881
Author(s):  
Ilona Pyszka ◽  
Beata Jędrzejewska

A series of dyes based on the acenaphthoquinoxaline skeleton was synthesized. Their structure was modified by introducing electron-withdrawing and electron-donating groups, increasing the number of conjugated double bonds and the number and position of nitrogen atoms, as well as the arrangement of aromatic rings (linear or angular). The dyes were investigated as a component in the photoinitiating systems of radical polymerization for a potential application in dentistry. They acted as the primary absorber of visible light and the acceptor of an electron, which was generated from a second component being an electron donor. Thus, the radicals were generated by the photoinduced intermolecular electron transfer (PET) process. Electron donors used differed in the type of heteroatom, i.e., O, S and N and the number and position of methoxy substituents. To test the ability to initiate the polymerization reaction by photoinduced hydrogen atom transfer, we used 2-mercaptobenzoxazole as a co-initiator. The effectiveness of the photoinitiating systems clearly depends on both the modified acenaphthoquinocaline structure and the type of co-initiator. The lower amount of heat released during the chain reaction and the polymerization rate comparable to this achieved for the photoinitiator traditionally used in dentistry (camphorquinone) indicates that the studied dyes may be valuable in this field.


Sign in / Sign up

Export Citation Format

Share Document