Nanoscale imaging of microbial pathogens using atomic force microscopy

2009 ◽  
Vol 1 (2) ◽  
pp. 168-180 ◽  
Author(s):  
David Alsteens ◽  
Etienne Dague ◽  
Claire Verbelen ◽  
Guillaume Andre ◽  
Vincent Dupres ◽  
...  
2019 ◽  
Vol 12 ◽  
pp. 1-7 ◽  
Author(s):  
Marion Mathelié-Guinlet ◽  
Felipe Viela ◽  
Albertus Viljoen ◽  
Jérôme Dehullu ◽  
Yves F. Dufrêne

RSC Advances ◽  
2019 ◽  
Vol 9 (47) ◽  
pp. 27464-27474 ◽  
Author(s):  
Xinfeng Tan ◽  
Dan Guo ◽  
Jianbin Luo

Dynamic force microscopy (DFM) has become a multifunctional and powerful technique for the study of the micro–nanoscale imaging and force detection, especially in the compositional and nanomechanical properties of polymers.


2021 ◽  
Vol 13 (2) ◽  
pp. 28
Author(s):  
Zuzanna Orzechowska ◽  
Mariusz Mrózek ◽  
Wojciech Gawlik ◽  
Adam Wojciechowski

We demonstrate a simple dip-coating method of covering standard AFM tips with nanodiamonds containing color centers. Such coating enables convenient visualization of AFM tips above transparent samples as well as using the tip for performing spatially resolved magnetometry. Full Text: PDF ReferencesG. Binnig, C. F. Quate, C. Gerber, "Atomic Force Microscope", Phys. Rev. Lett. 56, 930 (1986). CrossRef F .J. Giessibl, "Advances in atomic force microscopy", Rev. Mod. Phys. 75, 949 (2003). CrossRef S. Kasas, G. Dietler, "Probing nanomechanical properties from biomolecules to living cells", Eur. J. Appl. Physiol. 456, 13 (2008). CrossRef C. Roduit et al., "Stiffness Tomography by Atomic Force Microscopy", Biophys. J. 97, 674 (2009). CrossRef L. A. Kolodny et al., "Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules", Anal. Chem. 73, 1959 (2001). CrossRef L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond", Rep. Prog. Phys. 77, 056503 (2014). CrossRef C. L. Degen, "Scanning magnetic field microscope with a diamond single-spin sensor", Appl. Phys. Lett. 92, 243111 (2008). CrossRef J. M. Taylor et al., "High-sensitivity diamond magnetometer with nanoscale resolution", Nat. Phys. 4, 810 (2008). CrossRef J. R. Maze et al., "Nanoscale magnetic sensing with an individual electronic spin in diamond", Nature 455, 644 (2008). CrossRef L. Rondin et al., "Nanoscale magnetic field mapping with a single spin scanning probe magnetometer", Appl. Phys. Lett. 100, 153118 (2012). CrossRef J. P. Tetienne et al., "Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope", Science 344, 1366 (2014). CrossRef R. Nelz et al., "Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips", Appl. Phys. Lett. 109, 193105 (2016). CrossRef G. Balasubramanian et al., "Nanoscale imaging magnetometry with diamond spins under ambient conditions", Nature 455, 648 (2008). CrossRef P. Maletinsky et al., "A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres", Nat. nanotechnol. 7, 320 (2012). CrossRef L. Thiel et al., "Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer", Nat. nanotechnol. 11, 677 (2016). CrossRef F. Jelezko et al., "Single spin states in a defect center resolved by optical spectroscopy", Appl. Phys. Lett. 81, 2160 (2002). CrossRef M. W. Doherty et al., "The nitrogen-vacancy colour centre in diamond", Phys. Rep. 528, 1 (2013). CrossRef C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000). CrossRef A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, "Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers", Science 276, 2012 (1997). CrossRef F. Dolde et al., "Electric-field sensing using single diamond spins", Nat. Phys. 7, 459 (2011). CrossRef K. Sasaki et al., "Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond", Rev. Sci. Instrum. 87, 053904 (2016). CrossRef A. M. Wojciechowski et al., "Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers", Materials 12, 2951 (2019). CrossRef I. V. Fedotov et al., "Fiber-optic magnetometry with randomly oriented spins", Opt. Lett. 39, 6755 (2014). CrossRef


Author(s):  
Daniel R. Kiracofe ◽  
Arvind Raman

Many newer atomic force microscopy (AFM) methods aim to excite higher-order eigenmodes of the microcantilevers in multi-frequency excitation/detection schemes for improving compositional contrast in nanoscale imaging. Yet, before moving to multi-mode excitation schemes it is important to understand how, if at all, operating the microscope at eigenmodes beyond the fundamental is different from operating at the fundamental eigenmode. This question becomes particularly relevant for biological applications when cantilevers are operated in liquid environments, which is critical for studying biological processes under physiological “native” conditions. In this work, the dynamics of AFM cantilevers in liquids are investigated when the cantilever is driven at its second natural frequency — a situation, which from prior work in air or vacuum, ought not be essentially different from operating at the first natural frequency. The dynamics of cantilevers in liquids tapping on samples are in fact found to be surprisingly different when operating at the second eigenmode. A complex set of behaviors are found including sub-harmonic (e.g. only one impact every four drive cycles), drum-roll like multiple-impacts (e.g.two or three impacts every drive cycle) and chaotic. The subharmonic behaviors, in particular, have not been studied before in liquids and are not accounted for in any current method. These behaviors are demonstrated through numerical simulations and confirmed with experiments.


Sign in / Sign up

Export Citation Format

Share Document