scholarly journals Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers

2021 ◽  
Vol 13 (2) ◽  
pp. 28
Author(s):  
Zuzanna Orzechowska ◽  
Mariusz Mrózek ◽  
Wojciech Gawlik ◽  
Adam Wojciechowski

We demonstrate a simple dip-coating method of covering standard AFM tips with nanodiamonds containing color centers. Such coating enables convenient visualization of AFM tips above transparent samples as well as using the tip for performing spatially resolved magnetometry. Full Text: PDF ReferencesG. Binnig, C. F. Quate, C. Gerber, "Atomic Force Microscope", Phys. Rev. Lett. 56, 930 (1986). CrossRef F .J. Giessibl, "Advances in atomic force microscopy", Rev. Mod. Phys. 75, 949 (2003). CrossRef S. Kasas, G. Dietler, "Probing nanomechanical properties from biomolecules to living cells", Eur. J. Appl. Physiol. 456, 13 (2008). CrossRef C. Roduit et al., "Stiffness Tomography by Atomic Force Microscopy", Biophys. J. 97, 674 (2009). CrossRef L. A. Kolodny et al., "Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules", Anal. Chem. 73, 1959 (2001). CrossRef L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond", Rep. Prog. Phys. 77, 056503 (2014). CrossRef C. L. Degen, "Scanning magnetic field microscope with a diamond single-spin sensor", Appl. Phys. Lett. 92, 243111 (2008). CrossRef J. M. Taylor et al., "High-sensitivity diamond magnetometer with nanoscale resolution", Nat. Phys. 4, 810 (2008). CrossRef J. R. Maze et al., "Nanoscale magnetic sensing with an individual electronic spin in diamond", Nature 455, 644 (2008). CrossRef L. Rondin et al., "Nanoscale magnetic field mapping with a single spin scanning probe magnetometer", Appl. Phys. Lett. 100, 153118 (2012). CrossRef J. P. Tetienne et al., "Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope", Science 344, 1366 (2014). CrossRef R. Nelz et al., "Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips", Appl. Phys. Lett. 109, 193105 (2016). CrossRef G. Balasubramanian et al., "Nanoscale imaging magnetometry with diamond spins under ambient conditions", Nature 455, 648 (2008). CrossRef P. Maletinsky et al., "A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres", Nat. nanotechnol. 7, 320 (2012). CrossRef L. Thiel et al., "Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer", Nat. nanotechnol. 11, 677 (2016). CrossRef F. Jelezko et al., "Single spin states in a defect center resolved by optical spectroscopy", Appl. Phys. Lett. 81, 2160 (2002). CrossRef M. W. Doherty et al., "The nitrogen-vacancy colour centre in diamond", Phys. Rep. 528, 1 (2013). CrossRef C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000). CrossRef A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, "Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers", Science 276, 2012 (1997). CrossRef F. Dolde et al., "Electric-field sensing using single diamond spins", Nat. Phys. 7, 459 (2011). CrossRef K. Sasaki et al., "Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond", Rev. Sci. Instrum. 87, 053904 (2016). CrossRef A. M. Wojciechowski et al., "Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers", Materials 12, 2951 (2019). CrossRef I. V. Fedotov et al., "Fiber-optic magnetometry with randomly oriented spins", Opt. Lett. 39, 6755 (2014). CrossRef

Author(s):  
Hosam Gharib Abdelhady

Objectives: This research aims at investigating the effect of nano-encapsulating the MagnevistTM, a magnetic resonance imaging agent, within generation four, 1, 4- diaminobutane core polyamidoamine dendrimers on their molecular morphology and their nano-mechanical properties in liquid.Methods: Atomic force microscopy was applied in its imaging and force measuring modes to investigate, on the molecular scale, the morphological and nano-mechanical changes in generation four, 1, 4-diaminobutane core polyamidoamine dendrimers due to the nano-encapsulation of Magnevist in liquid.Results: The weight gain of dendrimers indicates the loading of ~ 30 Magnevist molecules. This has increased the rigidity of the dendrimer molecules, compared to unloaded dendrimers. Atomic force microscopy showed individual well-defined nano-spherical particles with nanoscopic dimensions of (40±13 nm in diameter and 4.38±0.54 nm in height). In contrast, imaging of non encapsulated dendrimers revealed loose aggregates of 15±3.5 nm in diameter and 0.9±0.2 nm in height.Conclusions: The atomic force microscopy, in liquid, was successfully applied to differentiate between Magnevist nano-encapsulated and non-encapsulated dendrimers, in their morphology and in their nano-mechanical properties. The results confirm the nano-encapsulation of Magnevist within generation four, 1,4-diaminobutane core polyamidoamine dendrimers. This loading increased the rigidity of the nanoencapsulated dendrimer, packed ~ 9 Magnevist-G 4 molecules together and may probably enhance the magnetic resonance images and increase their duration of time in the bloodstream when compared with Magnevist alone. Thus elongating the imaging sessions without the need for additional contrast agent doses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Liangdong Sun ◽  
Hongcheng Gu ◽  
Xiaojiang Liu ◽  
Haibin Ni ◽  
Qiwei Li ◽  
...  

AbstractConventional atomic force microscopy (AFM) tips have remained largely unchanged in nanomachining processes, constituent materials, and microstructural constructions for decades, which limits the measurement performance based on force-sensing feedbacks. In order to save the scanning images from distortions due to excessive mechanical interactions in the intermittent shear-mode contact between scanning tips and sample, we propose the application of controlled microstructural architectured material to construct AFM tips by exploiting material-related energy-absorbing behavior in response to the tip–sample impact, leading to visual promotions of imaging quality. Evidenced by numerical analysis of compressive responses and practical scanning tests on various samples, the essential scanning functionality and the unique contribution of the cellular buffer layer to imaging optimization are strongly proved. This approach opens new avenues towards the specific applications of cellular solids in the energy-absorption field and sheds light on novel AFM studies based on 3D-printed tips possessing exotic properties.


RSC Advances ◽  
2019 ◽  
Vol 9 (47) ◽  
pp. 27464-27474 ◽  
Author(s):  
Xinfeng Tan ◽  
Dan Guo ◽  
Jianbin Luo

Dynamic force microscopy (DFM) has become a multifunctional and powerful technique for the study of the micro–nanoscale imaging and force detection, especially in the compositional and nanomechanical properties of polymers.


2009 ◽  
Vol 1 (2) ◽  
pp. 168-180 ◽  
Author(s):  
David Alsteens ◽  
Etienne Dague ◽  
Claire Verbelen ◽  
Guillaume Andre ◽  
Vincent Dupres ◽  
...  

Author(s):  
Поляков ◽  
Petr Polyakov ◽  
Гинзбург ◽  
B. Ginzburg ◽  
Каминская ◽  
...  

In this case we investigate the NdFeB permanent magnet by the atomic force microscopy. Obtained phase diagrams in the center and on the edge of the sample. We investigate the uniformity of the magnetic structure.


Sign in / Sign up

Export Citation Format

Share Document