frequency excitation
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 102)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiawen Song ◽  
Guihong Sun ◽  
Xin Zeng ◽  
Xiangwen Li ◽  
Quan Bai ◽  
...  

AbstractWe propose piezoelectric energy harvester (PEH) with double-cantilever-beam (DCB) undergoing coupled bending-torsion vibrations by combining width-splitting method and asymmetric mass, in order that more ambient energy could be harvested from environmental vibration with multiple-frequency excitation. The geometrical dimensions are optimized for PEHDCB, when the maximum of output peak voltages Up-max and resonance frequency difference (Δf0) between the first and second modes are chosen as optimization objectives based on orthogonal test method. The energy harvesting efficiency is evaluated by the proportion of half-power bandwidth and quality factor, and the experimental and simulation results are compared to verify reliability. The Up-max1 and Pp-max1 are increased 25.2% and 57.3% for PEHDCB under the multi-frequency excitation, when the split-width method is applied into PEH with single-cantilever-beam (SCB) undergoing coupled bending-torsion vibrations. The deviations of Up-max1 and f0 are at the ranges of 4.9–14.2% and 2.2–2.5% for PEHDCB under the different mass ratios, and the measurement reliability is acceptable considering incomplete clamping, damping and inevitable assembly effects. The energy harvesting efficiency of PEHDCB presented is much higher than that of the conventional PEHSCB from environmental vibration with multiple-frequency excitation.


LWT ◽  
2022 ◽  
Vol 153 ◽  
pp. 112435
Author(s):  
Yanhua Ding ◽  
Yaoyao Wang ◽  
Wenjuan Qu ◽  
Xiaofeng Ren ◽  
Feng Lu ◽  
...  

Author(s):  
SatendraPal Chauhan ◽  
Dinesh Kumar Chandraker ◽  
Naveen Kumar

Abstract Thermal stratification has potential applications in the nuclear and solar industries. Thermal performance of passive residual heat removal systems and solar heaters is affected by the thermal stratification in a pool. Under the seismic condition, thermal stratification behavior of liquid in the pool has never been studied and reported in the literature. The present work focuses on the experimental investigation of thermal stratification in a pool under the seismic condition with the horizontally mounted heater simulating heat exchanger. Effect of heater submergence depth, frequency of excitation and amplitude of displacement on the thermal stratification has been studied. It was observed that the heater submergence depth significantly influences the thermal stratification in a pool. When a pool is subjected to an external excitation, the pool water separates into two zones; convective and impulsive. If the heater submergence depth in the impulsive zone, excitation effects are not found. If heater submergence depth is close to convective zone, significant effects are observed. However, it was observed that only first mode of excitation with large amplitude helps to achieve complete thermal mixing and higher modes of excitation have the minimal on the mitigating of thermal stratification. Non-dimensional stratification number has been evaluated to explain the mitigation of thermal stratification with seismic excitation.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110668
Author(s):  
Runlin Chen ◽  
Chen Du ◽  
Xiaotuan Wang ◽  
Yanchao Zhang ◽  
Kai Liu

Aiming at the dynamic characteristics test bench of sliding bearings, the dynamic model is established. Based on the forward and inverse dynamic problems of the bearing, a simulation evaluation method for the identification accuracy of the sliding bearing dynamic characteristics is proposed and the algorithm is verified. The identification errors of dynamic characteristic coefficients under different excitation frequencies are analyzed, the sensitivities of single frequency excitation method and dual-frequency excitation method to test error are contrastively analyzed, and the influence laws of dynamic characteristic identification accuracy of sliding bearing are evaluated. Based on which the traditional single frequency excitation method has been improved. The dynamic characteristic test should be carried out respectively in the low frequency range and the high frequency range. The main stiffness and cross damping are the average of two tests, the main damping is the identification value in the high frequency, and the cross stiffness is the identification value in the low frequency. That will effectively reduce the impact of test error. The obtained data and laws could support the improvement of the dynamic characteristics test method of sliding bearings and the confirmation of test parameters, thereby the accuracy of dynamic characteristics identification is improved.


Author(s):  
Cagri Yilmaz ◽  
Ramazan Sahin ◽  
Eyup Sabri Topal

Abstract We present a detailed analysis on measurement sensitivity of dynamic acoustic forces via numerical simulation of the micro-cantilever responses. The rectangular micro-cantilever is regarded as a point mass in the dynamic model of forced and damped harmonic oscillator. We use single- and bimodal-frequency excitation schemes for actuation of the micro-cantilever in the presence of dynamic acoustic forces. In bimodal-frequency excitation scheme, the micro-cantilever is excited at its first two eigenmode frequencies simultaneously as opposed to single-frequency excitation. First, we numerically obtain micro-cantilever deflections by solving the Equations of Motions (EOMs) constructed for the first two eigenmodes. Then, we determine oscillation amplitude and phase shift as a function of acoustic force strength within different frequency regions. Moreover, we relate amplitude and phase shift to virial and energy dissipation in order to explore the interaction between flexural modes in multifrequency excitation. The simulation results point out that bimodal-frequency excitation improves the measurement sensitivity of dynamic acoustic forces at particular frequencies. Herein, simultaneous application of driving forces enables higher sensitivities of observables and energy quantities as acoustic force frequencies become around the eigenmode frequencies. For our case, we obtain the highest phase shift (approximately 178 degrees) for the acoustic force strength of 100 pN at the frequency of around 307.2 kHz. Therefore, this method can be easily adapted to improve measurement sensitivity of dynamic acoustic forces in a wider frequency window.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6897
Author(s):  
Ewelina Kosicka ◽  
Marek Borowiec ◽  
Marcin Kowalczuk ◽  
Aneta Krzyzak

The aim of this study was to determine the effect of a selected physical modifier with different granularity and mass percentage on the dynamics of aerospace polymer composites. The tests were carried out on samples made of certified aerospace materials used, among other purposes, for the manufacture of aircraft skin components. The hybrid composites were prepared from L285 resin, H286 hardener, GG 280T carbon fabric in twill 2/2 and alumina (Al2O3, designated as EA in this work). The manufactured composites contained alumina with grain sizes of F220, F240, F280, F320 and F360. The mass proportion of the modifier in the tested samples was 5% and 15%. The tested specimens, as cantilever beams fixed unilaterally, were subjected to kinematic excitation with defined parameters of amplitude and frequency excitation in the basic resonance zone of the structure. The results, obtained as dynamic responses, are presented in the form of amplitude–frequency characteristics. These relationships clearly indicate the variable nature of composite materials due to modifier density and grain size. The novelty of this study is the investigation of the influence of the alumina properties on system dynamics responses.


2021 ◽  
Vol 92 (11) ◽  
pp. 114502
Author(s):  
Guanghui Shi ◽  
Lizhi Xiao ◽  
Sihui Luo ◽  
Zhihao Long ◽  
Zhengduo Wang

2021 ◽  
Vol 155 (15) ◽  
pp. 154201
Author(s):  
Laurynas Dagys ◽  
Christian Bengs ◽  
Malcolm H. Levitt

2021 ◽  
Vol 4 (1) ◽  
pp. 332-340
Author(s):  
Cagri Yilmaz ◽  
Eyup Sabri Topal

Virial and energy dissipation, related to oscillation observable responses, possess complementary information regarding acoustic force measurements. In this paper, we introduce a mathematical framework describing the analytic relationship between oscillation observables and energy quantities at the second eigenmode in the measurement of dynamic acoustic forces. We utilize a bimodal-frequency excitation scheme for actuation of the micro-cantilever array to obtain high-sensitivity frequency bands. Herein, we analyze the virials of acoustic force interaction and the energy dissipation levels on the domain of acoustic force frequency. For our case, we obtain the high-frequency bands of around 200-270 kHz and 440-570 kHz for the force strengths in the range of 4.0-36.0 pN. In addition, results of virials and dissipated power with respect to acoustic force strengths are introduced for low- and high-sensitivity frequency regions. Therefore, the energy quantities can be robustly utilized to determine high-sensitivity frequency windows in the measurement of dynamic acoustic forces.


Sign in / Sign up

Export Citation Format

Share Document