A constrained hybrid Monte-Carlo algorithm and the problem of calculating the free energy in several variables

Author(s):  
C. Hartmann ◽  
C. Schütte
2020 ◽  
Vol 26 (3) ◽  
pp. 223-244
Author(s):  
W. John Thrasher ◽  
Michael Mascagni

AbstractIt has been shown that when using a Monte Carlo algorithm to estimate the electrostatic free energy of a biomolecule in a solution, individual random walks can become entrapped in the geometry. We examine a proposed solution, using a sharp restart during the Walk-on-Subdomains step, in more detail. We show that the point at which this solution introduces significant bias is related to properties intrinsic to the molecule being examined. We also examine two potential methods of generating a sharp restart point and show that they both cause no significant bias in the examined molecules and increase the stability of the run times of the individual walks.


2002 ◽  
Vol 528 (3-4) ◽  
pp. 301-305 ◽  
Author(s):  
Simon Catterall ◽  
Sergey Karamov

1988 ◽  
Vol 03 (14) ◽  
pp. 1367-1378 ◽  
Author(s):  
RAJAN GUPTA ◽  
GREGORY W. KILCUP ◽  
APOORVA PATEL ◽  
STEPHEN R. SHARPE ◽  
PHILIPPE DE FORCRAND

We show that the overrelaxed algorithm of Creutz and of Brown and Woch is the optimal local update algorithm for simulation of pure gauge SU(3). Our comparison criterion includes computer efficiency and decorrelation times. We also investigate the rate of decorrelation for the Hybrid Monte Carlo algorithm.


2014 ◽  
Vol 16 (45) ◽  
pp. 24913-24919 ◽  
Author(s):  
M. A. Gonzalez ◽  
E. Sanz ◽  
C. McBride ◽  
J. L. F. Abascal ◽  
C. Vega ◽  
...  

1993 ◽  
Vol 315 (1-2) ◽  
pp. 152-156 ◽  
Author(s):  
Paolo Marenzoni ◽  
Luigi Pugnetti ◽  
Pietro Rossi

2018 ◽  
Vol 175 ◽  
pp. 14003
Author(s):  
Joel Giedt ◽  
James Flamino

We obtain nonperturbative results on the sine-Gordon model using the lattice field technique. In particular, we employ the Fourier accelerated hybrid Monte Carlo algorithm for our studies. We find the critical temperature of the theory based autocorrelation time, as well as the finite size scaling of the “thickness” observable used in an earlier lattice study by Hasenbusch et al.


Sign in / Sign up

Export Citation Format

Share Document