Numerical study on mixed convective flow of water‐based magnetite nanofluid through a wavy channel containing porous blocks under the effect of an oscillating magnetic field

Author(s):  
Victor M. Job ◽  
Sreedhara Rao Gunakala
2016 ◽  
Vol 138 (10) ◽  
Author(s):  
G. Lorenzini ◽  
B. S. Machado ◽  
L. A. Isoldi ◽  
E. D. dos Santos ◽  
L. A. O. Rocha

The present work shows a numerical study of laminar, steady, and mixed convective flow inside lid-driven square cavity with intruded rectangular fin in its lower surface. The main purpose here is to maximize the heat transfer between the rectangular fin and the surrounding mixed convective flow inside a lid-driven cavity by means of constructal design. The problem is subject to two constraints, the lid-driven cavity and intruded fin areas. The ratio between the fin and cavity areas is kept fixed (ϕ = 0.05). The investigated geometry has one degree-of-freedom (DOF), the fin aspect ratio (H1/L1), which is varied in the range 0.1 ≤ H1/L1 ≤ 10. The aspect ratio of the cavity is maintained fixed (H/L = 1.0). The effect of the fin geometry over the Nusselt number is investigated for several Rayleigh (RaH = 103, 104, 105 and 106) and Reynolds numbers (ReH = 10, 102, 3.0 × 102, 5.0 × 102, 7.0 × 102 and 103). For all simulations, the Prantdl number is fixed (Pr = 0.71). The conservation equations of mass, momentum, and energy are numerically solved with the finite volume method. Results showed that fin geometry (H1/L1) has strong influence over the Nusselt number in the fin. It was also observed that the effect of H1/L1 over Nusselt number changes considerably for different Rayleigh numbers and for the lowest magnitudes of Reynolds numbers, for example, differences of nearly 770% between RaH = 106 and forced convective flow were observed for the lowest Reynolds number studied (ReH = 10).


2020 ◽  
Vol 23 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Aurang Zaib ◽  
Rizwan Ul Haq ◽  
Mohsen Sheikholeslami ◽  
Ali J. Chamkha ◽  
Mohammad Mehdi Rashidi

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1861-1873
Author(s):  
Thangavelu Mahalakshmi ◽  
Nagarajan Nithyadevi ◽  
Hakan Oztop

This present numerical study explores the MHD mixed convective flow and heat transfer analysis in a square porous enclosure filled with nanofluid having center thin heater. The left and right walls of the enclosure are maintained at temperature T . The bottom wall is c considered with a constant heat source whereas the remaining part of bottom wall and top wall are kept adiabatic. The finite volume method based on SIMPLE algorithm is used to solve the governing equations in order to investigate the effect of heater length, Hartmann, Richardson, and Darcy numbers on the fluid-flow and heat transfer characteristics inside the enclosure. A set of graphical results are presented in terms of streamlines, isotherms, mid height velocity profiles and average Nusselt numbers. The results reveal that heat transfer rate increases as heater length increases for increasing Darcy and Richardson numbers. Among the two positions of heaters, larger enhancement of heat transfer is obtained for horizontal heater of maximum length. It is observed that, Hartmann number is a good control parameter for heat transfer in fluid-flow through porous medium in enclosure. Moreover, Ag-water nanofluid has greater merit to be used for heat transfer enhancement. This problem may be occurred in designing cooling system for electronic equipment to maximize the efficiency with active and secured operational conditions.


2018 ◽  
Vol 28 (9) ◽  
pp. 2111-2131 ◽  
Author(s):  
Mikhail A. Sheremet ◽  
Marina S. Astanina ◽  
Ioan Pop

Purpose The purpose of this paper is a numerical analysis of natural convection in a square porous cavity filled with a water-based magnetic fluid of geothermal viscosity under the effect of inclined uniform magnetic field. Design/methodology/approach The domain of interest includes the square porous cavity filled with a water-based magnetic fluid (W40). Horizontal walls are supposed to be adiabatic, while right vertical wall is kept at constant low temperature and left vertical wall is kept at constant high temperature. An inclined uniform magnetic field affects the fluid flow and heat transfer inside the cavity. The viscosity of the working fluid is proportional to the linearly decreasing function of depth (vertical coordinate) and inversely proportional to the linear function of temperature. It is assumed in the analysis that the flow is laminar. The fluid is Newtonian and the Boussinesq approximation is valid. The governing equations have been discretized using the finite difference method with the uniform grid. Simulations have been carried out for different values of the Rayleigh number, Hartmann number, Darcy number, magnetic field inclination angle and viscosity variation parameters. Findings It has been revealed that an increase in the viscosity parameters leads to the heat transfer enhancement and convective flow intensification. At the same time, this intensification is more essential for high values of the Rayleigh number. Originality/value The originality of this work is to analyze MHD natural convection in a square porous cavity filled with a water-based magnetic fluid of geothermal viscosity. The results would benefit scientists and engineers to become familiar with the analysis of convective heat and mass transfer in nanofluids, and the way to predict the properties of nanofluid convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.


Sign in / Sign up

Export Citation Format

Share Document