Immunocytochemical Detection of Parathyroid Hormone-Related Protein in Vascular Endothelial Cells

1994 ◽  
Vol 199 (2) ◽  
pp. 547-551 ◽  
Author(s):  
M. Ishikawa ◽  
Y. Ouchi ◽  
M. Akishita ◽  
K. Kozaki ◽  
K. Toba ◽  
...  
2001 ◽  
Vol 170 (2) ◽  
pp. 433-440 ◽  
Author(s):  
L Kalinowski ◽  
LW Dobrucki ◽  
T Malinski

Parathyroid hormone (PTH)-related protein (PTHrP) is produced in smooth muscles and endothelial cells and is believed to participate in the local regulation of vascular tone. No direct evidence for the activation of endothelium-derived nitric oxide (NO) signaling pathway by PTHrP has been found despite attempts to identify it. Based on direct in situ measurements, it is reported here for the first time that the human PTH/PTHrP receptor analogs, hPTH(1--34) and hPTHrP(1--34), stimulate NO release from a single endothelial cell. A highly sensitive porphyrinic microsensor with a response time of 0.1 ms and a detection limit of 1 nmol/l was used for the measurement of NO. Both hPTH(1--34) and hPTHrP(1--34) stimulated NO release at nanomolar concentrations. The peak concentration of 0.1 micromol/l hPTH(1--34)- and 0.1 micromol/l hPTHrP(1--34)-stimulated NO release was 175+/-9 and 248+/-13 nmol/l respectively. This represents about 30%--40% of maximum NO concentration recorded in the presence of (0.1 micromol/l) calcium ionophore. Two competitive PTH/PTHrP receptor antagonists, 10 micromol/l [Leu(11),d -Trp(12)]-hPTHrP(7--34)amide and 10 micromol/l [Nle(8,18),Tyr(34)]-bPTH(3--34)amide, were equipotent in antagonizing hPTH(1--34)-stimulated NO release; [Leu(11),d -Trp(12)]-hPTHrP(7--34)amide was more potent than [Nle(8,18),Tyr(34)]-bPTH(3--34)amide in inhibiting hPTHrP(1--34)-stimulated NO release. The PKC inhibitor, H-7 (50 micromol/l), did not change hPTH(1--34)- and hPTHrP(1--34)-stimulated NO release, whereas the combined effect of 10 micromol/l of the cAMP antagonist, Rp-cAMPS, and 50 micromol/l of the calmodulin inhibitor, W-7, was additive. The present studies show that both hPTH(1--34) and hPTHrP(1--34) activate NO production in endothelial cells. The activation of NO release is through PTH/PTHrP receptors and is mediated via the calcium/calmodulin pathway.


2008 ◽  
Vol 295 (2) ◽  
pp. F415-F425 ◽  
Author(s):  
Juan A. Ardura ◽  
Raúl Berruguete ◽  
David Rámila ◽  
M. Victoria Alvarez-Arroyo ◽  
Pedro Esbrit

Parathyroid hormone-related protein (PTHrP) interacts with vascular endothelial growth factor (VEGF) in osteoblasts. Since both PTHrP and VEGF have both proinflammatory and profibrogenic features, we assessed here whether these factors might act in concert to promote fibrogenesis in the obstructed kidney. VEGF receptor (VEGFR)-1 was upregulated, while VEGFR-2 was downregulated (at both mRNA and protein levels) in the mouse kidney within 2–6 days after ureteral obstruction. VEGF protein levels also increased in the obstructed kidney at the latter time. Moreover, this VEGF and VEGFR-1 upregulation was higher in mice overexpressing PTHrP in the proximal tubule than in control littermates. These changes were associated with higher fibronectin mRNA expression and α-smooth muscle actin (α-SMA) and integrin-linked kinase (ILK) immunostaining and lower apoptotic tubulointerstitial cells in the mouse obstructed kidney than in control littermates. Pretreatment with a neutralizing anti-VEGF antibody reversed these responses in the obstructed kidney of both types of mice. In vitro, PTHrP-(1-36) increased (maximal 2-fold vs. basal, at 100 nM) α-SMA and ILK protein expression and decreased E-cadherin protein levels in renal tubuloepithelial mouse cortical tubule and normal rat kidney (NRK) 52E cells. PTHrP-(1-36) also decreased cyclosporine A- and/or osmotic stress-induced apoptosis in these cells and in renal fibroblastic NRK 49F cells. These effects elicited by PTHrP-(1-36) were associated with both VEGF and VEGFR-1 upregulation, and abolished by the anti-VEGF antibody. Collectively, these findings strongly suggest that VEGF acts as an important mediator of PTHrP to promote fibrogenesis in the obstructed kidney.


Sign in / Sign up

Export Citation Format

Share Document