osteoblastic cells
Recently Published Documents


TOTAL DOCUMENTS

1329
(FIVE YEARS 69)

H-INDEX

91
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kaho Nomura ◽  
Yoshifumi Kimira ◽  
Yoshihiro Osawa ◽  
Aya Kataoka-Matsushita ◽  
Koichi Takao ◽  
...  

Collagen derived dipeptide prolyl-hydroxyproline (Pro-Hyp) directly binds to the forkhead box g1 (Foxg1) protein and causes it to undergo structural alteration. Pro-Hyp also promotes the production of a regulator of osteoblast differentiation, Runt-related transcription factor 2 (Runx2), through Foxg1, inducing osteoblast differentiation. In addition, Pro-Hyp disrupts the interaction between Foxg1 and Runx2, and Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp. To elucidate the mechanism of Pro-Hyp that promotes osteoblast differentiation, we investigated whether Pro-Hyp regulates the Runx2 P1 promoter together with Foxg1. This study revealed that Pro-Hyp is taken up by osteoblastic cells via the Solute carrier family 15 member 4. In the presence of Pro-Hyp, Runx2 is translocated from the nucleus to the cytoplasm and Foxg1 is translocated from the cytoplasm to the nucleus. We also found that Pro-Hyp promoted the interaction between Foxo1 and Runx2 and the dissociation of Foxg1 from Runx2. Moreover, we identified the Pro-Hyp response element in the Runx2 distal P1 promoter at nt −375 to −316, including the Runx2 binding sites and Fox core sequence. In the presence of Pro-Hyp, Runx2 is dissociated from the Pro-Hyp response element in the Runx2 distal P1 promoter. Subsequently, Foxg1 and Foxo1 activated the Runx2 promoter by binding to the Pro-Hyp response element. In summary, we delineated the mechanism by which Pro-Hyp stimulates the bone-related Runx2 distal P1 promoter activity in osteoblastic cells through Foxg1, Foxo1, and Runx2.


2021 ◽  
Author(s):  
L Schemmelmann ◽  
M Brand ◽  
D Kronenberg ◽  
R Stange

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kanagaraj Gomathi ◽  
Muthukumar Rohini ◽  
Nicola C. Partridge ◽  
Nagarajan Selvamurugan

Abstract Transforming growth factor beta 1 (TGF-β1) functions as a coupling factor between bone development and resorption. Matrix metalloproteinase 13 (MMP13) is important in bone remodeling, and skeletal dysplasia is caused by a deficiency in MMP13 expre-ssion. Runx2, a transcription factor is essential for bone development, and MMP13 is one of its target genes. TGF-β1 promoted Runx2 phosphorylation, which was necessary for MMP13 production in osteoblastic cells, as we previously shown. Since the phosphorylation of some proteins causes them to be degraded by the ubiquitin/proteasome pathway, we hypothesized that TGF-β1 might stabilize the phosphorylated Runx2 protein for its activity by other post-translational modification (PTM). This study demonstrated that TGF-β1-stimulated Runx2 acetylation in rat osteoblastic cells. p300, a histone acetyltransferase interacted with Runx2, and it promoted Runx2 acetylation upon TGF-β1-treatment in these cells. Knockdown of p300 decreased the TGF-β1-stimulated Runx2 acetylation and MMP13 expression in rat osteoblastic cells. TGF-β1-treatment stimulated the acetylated Runx2 bound at the MMP13 promoter, and knockdown of p300 reduced this effect in these cells. Overall, our studies identified the transcriptional regulation of MMP13 by TGF-β1 via Runx2 acetylation in rat osteoblastic cells, and these findings contribute to the knowledge of events presiding bone metabolism.


2021 ◽  
Vol 22 (19) ◽  
pp. 10195
Author(s):  
Sagrario Martin-Aragon ◽  
Paloma Bermejo-Bescós ◽  
Juana Benedí ◽  
Carlos Raposo ◽  
Franklim Marques ◽  
...  

Glucocorticoid-induced osteoporosis (GIO) is one of the most common secondary forms of osteoporosis. GIO is partially due to the apoptosis of osteoblasts and osteocytes. In addition, high doses of dexamethasone (DEX), a synthetic glucocorticoid receptor agonist, induces neurodegeneration by initiating inflammatory processes leading to neural apoptosis. Here, a neuroprotective bovine colostrum against glucocorticoid-induced neuronal damage was investigated for its anti-apoptotic activity in glucocorticoid-treated MC3T3-E1 osteoblastic cells. A model of apoptotic osteoblastic cells was developed by exposing MC3T3-E1 cells to DEX (0–700 μM). Colostrum co-treated with DEX was executed at 0.1–5.0 mg/mL. Cell viability was measured for all treatment schedules. Caspase-3 activation was assessed to determine both osteoblast apoptosis under DEX exposure and its potential prevention by colostrum co-treatment. Glutathione reduced (GSH) was measured to determine whether DEX-mediated oxidative stress-driven apoptosis is alleviated by colostrum co-treatment. Western blot was performed to determine the levels of p-ERK1/2, Bcl-XL, Bax, and Hsp70 proteins upon DEX or DEX plus colostrum exposure. Colostrum prevented the decrease in cell viability and the increase in caspase-3 activation and oxidative stress caused by DEX exposure. Cells, upon colostrum co-treated with DEX, exhibited higher levels of p-ERK1/2 and lower levels of Bcl-XL, Bax, and Hsp70. Our data support the notion that colostrum may be able to reduce DEX-induced apoptosis possibly via the activation of the ERK pathway and modulation of the Hsp70 system. We provided preliminary evidence on how bovine colostrum, as a complex and multi-component dairy product, in addition to its neuroprotective action, may affect osteoblastic cell survival undergoing apoptosis.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2383
Author(s):  
Giulia Alloisio ◽  
Chiara Ciaccio ◽  
Giovanni Francesco Fasciglione ◽  
Umberto Tarantino ◽  
Stefano Marini ◽  
...  

The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.


2021 ◽  
Vol 21 ◽  
Author(s):  
N Akshaya ◽  
N Srinaath ◽  
M Rohini ◽  
R Ilangovan ◽  
N Selvamurugan

Background: The dynamic changes that bone undergoes during the ensemble of remodeling are administered by vital factors like Runx2 (a bone transcription factor) and matrix metalloproteinases (MMPs). Aims: Parathyroid hormone (PTH), an FDA approved drug for bone-related ailments, was seen to stimulate MMP-13 expression via Runx2 to ultimately aid in the bone remodeling process. MicroRNAs (miRNAs) have been shown to play a major role in controlling bone metabolism, and the use of miRNAs has recently become promising therapeutic avenues for the treatment of many diseases, including bone disorders. Thus, in this study, we attempted to investigate and evaluate the expression of MMP-13 via a miRNA profile targeting Runx2 under PTH-regulation in rat osteoblastic cells. Methods: Parathyroid hormone (PTH), an FDA approved drug for bone-related ailments, was seen to stimulate MMP-13 expression via Runx2 to ultimately aid in the bone remodeling process. MicroRNAs (miRNAs) have been shown to play a major role in controlling bone metabolism, and the use of miRNAs has recently become promising therapeutic avenues for the treatment of many diseases, including bone disorders. Thus, in this study, we attempted to investigate and evaluate the expression of MMP-13 via a miRNA profile targeting Runx2 under PTH-regulation in rat osteoblastic cells. Results: Overexpression of miR-290 decreased the expression of Runx2, the binding of Runx2 at the MMP-13 promoter, and the expression of MMP-13 mRNA in PTH-treated UMR106-01 cells. A dual luciferase reporter assay identified the direct targeting of Runx2 mRNA by miR-290 in these cells. Conclusion: Our findings indicate that the PTH-responsive miR-290 regulated Runx2-mediated MMP-13 expression in rat osteoblastic cells, suggesting miR-290 as a molecular marker or target in bone and bone-related diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Coelho Santiago ◽  
Ana Lívia Gomes-Cornélio ◽  
Laudimar Alves de Oliveira ◽  
Mario Tanomaru-Filho ◽  
Loise Pedrosa Salles

AbstractCalcium silicate-based cements differ markedly in their radiopacifiers and the presence of calcium sulfate, aluminates, carbonates and other components that can affect their biological properties. This study aimed to compare the biological properties of six calcium silicate cements in human osteoblastic cell culture (Saos-2 cells): Bio-C Repair (Bio-C), PBS HP (PBS-HP), Biodentine (Biodentine), MTA Repair HP (MTA-HP), NeoMTA Plus (NeoMTA-P), and ProRoot MTA (ProRoot). After exposure to these materials, the cells were analyzed by MTT, wound healing, cell migration, and alkaline phosphatase activity (ALP) assays, real-time PCR (qPCR) analysis of the osteogenesis markers (osteocalcin or bone gamma-carboxyglutamate protein, BGLAP; alkaline phosphatase, ALPL; bone sialoprotein or secreted phosphoprotein 1, BNSP), and alizarin red staining (ARS). Curiously, the migration rates were low 24–48 h after exposure to the materials, despite the cells showing ideal rates of viability. The advanced and intermediate cell differentiation markers BGLAP and BNSP were overexpressed in the Bio-C, MTA-HP, and ProRoot groups. Only the Biodentine group showed ALPL overexpression, a marker of initial differentiation. However, the enzymatic activity was high in all groups except Biodentine. The mineralization area was significantly large in the NeoMTA-P, ProRoot, PBS-HP, MTA-HP, and Bio-C groups. The results showed that cellular environmental stiffness, which impairs cell mobility and diverse patterns of osteogenesis marker expression, is a consequence of cement exposure. Environmental stiffness indicates chemical and physical stimuli in the microenvironment; for instance, the release of cement compounds contributes to calcium phosphate matrix formation with diverse stiffnesses, which could be essential or detrimental for the migration and differentiation of osteoblastic cells. Cells exposed to Bio-C, PBS-HP, ProRoot, NeoMTA-P, and MTA-HP seemed to enter the advanced or intermediate differentiation phases early, which is indicative of the diverse potential of cements to induce osteogenesis. Cements that quickly stimulate osteoblast differentiation may be ideal for reparative and regenerative purposes since they promptly lead to dentin or bone deposition.


Sign in / Sign up

Export Citation Format

Share Document