Three Slow Myosin Heavy Chains Sequentially Expressed in Developing Mammalian Skeletal Muscle

1993 ◽  
Vol 158 (1) ◽  
pp. 183-199 ◽  
Author(s):  
Simon M. Hughes ◽  
Mildred Cho ◽  
Ilene Karsch-Mizrachi ◽  
Marilyn Travis ◽  
Laura Silberstein ◽  
...  
1985 ◽  
Vol 100 (1) ◽  
pp. 161-174 ◽  
Author(s):  
U Carraro ◽  
D Morale ◽  
I Mussini ◽  
S Lucke ◽  
M Cantini ◽  
...  

During several months of denervation, rat mixed muscles lose slow myosin, though with variability among animals. Immunocytochemical studies showed that all the denervated fibers of the hemidiaphragm reacted with anti-fast myosin, while many reacted with anti-slow myosin as well. This has left open the question as to whether multiple forms of myosin co-exist within individual fibers or a unique, possibly embryonic, myosin is present, which shares epitopes with fast and slow myosins. Furthermore, one can ask if the reappearance of embryonic myosin in chronically denervated muscle is related both to its re-expression in the pre-existing fibers and to cell regeneration. To answer these questions we studied the myosin heavy chains from individual fibers of the denervated hemidiaphragm by SDS PAGE and morphologically searched for regenerative events in the long term denervated muscle. 3 mo after denervation the severely atrophic fibers of the hemidiaphragm showed either fast or a mixture of fast and slow myosin heavy chains. Structural analysis of proteins sequentially extracted from muscle cryostat sections showed that slow myosin was still present 16 mo after denervation, in spite of the loss of the selective distribution of fast and slow features. Therefore muscle fibers can express adult fast myosin not only when denervated during their differentiation but also after the slow program has been expressed for a long time. Light and electron microscopy showed that the long-term denervated muscle maintained a steady-state atrophy for the rat's life span. Some of the morphological features indicate that aneural regeneration events continuously occur and significantly contribute to the increasing uniformity of the myosin gene expression in long-term denervated diaphragm.


1991 ◽  
Vol 113 (2) ◽  
pp. 303-310 ◽  
Author(s):  
S Lowey ◽  
G S Waller ◽  
E Bandman

Myosin isoforms contribute to the heterogeneity and adaptability of skeletal muscle fibers. Besides the well-characterized slow and fast muscle myosins, there are those isoforms that appear transiently during the course of muscle development. At a stage of development when two different myosins are coexpressed, the possibility arises for the existence of heterodimers, molecules containing two different heavy chains, or homodimers, molecules with two identical heavy chains. The question of whether neonatal and adult myosin isoforms can associate to form a stable heterodimer was addressed by using stage-specific monoclonal antibodies in conjunction with immunological and electron microscopic techniques. We find that independent of the ratio of adult to neonatal myosin, depending on the age of the animal, the myosin heavy chains form predominantly homodimeric molecules. The small amount of hybrid species present suggests that either the rod portion of the two heavy chain isoforms differs too much in sequence to form a stable alpha-helical coiled coil, or that the biosynthesis of the heavy chains precludes the formation of heterodimeric molecules.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Joseph W Sanger ◽  
Jushuo Wang ◽  
Yingli Fan ◽  
Balraj Mittal ◽  
Jean M Sanger

Sign in / Sign up

Export Citation Format

Share Document