microscopic techniques
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 117)

H-INDEX

36
(FIVE YEARS 6)

Author(s):  
Jitin Bajaj ◽  
Yad Ram Yadav

AbstractEndoscopic spine surgeries provide distinct advantages and is therefore a viable alternative to open or microscopic techniques. Indian surgeons have shown their expertise from craniovertebral junction to lumbosacral spine with these techniques. Many novel approaches like endoscopic transcervical, partial corpectomy, and others have been designed, and many technological innovations for these surgeries have been made. With different training programs attracting both native and international surgeons, the future of endoscopic spine surgery is bright.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 143
Author(s):  
Kexia Jin ◽  
Zhe Ling ◽  
Zhi Jin ◽  
Jiangfeng Ma ◽  
Shumin Yang ◽  
...  

The mechanical performance of bamboo is highly dependent on its structural arrangement and the properties of biomacromolecules within the cell wall. The relationship between carbohydrates topochemistry and gradient micromechanics of multilayered fiber along the diametric direction was visualized by combined microscopic techniques. Along the radius of bamboo culms, the concentration of xylan within the fiber sheath increased, while that of cellulose and lignin decreased gradually. At cellular level, although the consecutive broad layer (Bl) of fiber revealed a relatively uniform cellulose orientation and concentration, the outer Bl with higher lignification level has higher elastic modulus (19.59–20.31 GPa) than that of the inner Bl close to the lumen area (17.07–19.99 GPa). Comparatively, the cell corner displayed the highest lignification level, while its hardness and modulus were lower than that of fiber Bl, indicating the cellulose skeleton is the prerequisite of cell wall mechanics. The obtained cytological information is helpful to understand the origin of the anisotropic mechanical properties of bamboo.


2021 ◽  
Author(s):  
Gerhard Franz ◽  
Peter Lyckberg ◽  
Vladimir Khomenko ◽  
Vsevelod Chernousenko ◽  
Hans-Martin Schulz ◽  
...  

Abstract. We report on Precambrian soft-tissue microfossils from igneous rocks of the Volyn pegmatite district, associated with the Paleoproterozoic Korosten Pluton, north-western Ukraine. The fossils were recovered from m-sized miarolitic cavities and show a well-preserved 3D morphology, mostly fibrous, but with a large variety of fiber types, and also in irregular, flaky shapes reminiscent of former biofilms, and rare spherical objects. Based on literature data, own pyrolysis experiments and reflected light microscopy results, the organic matter (OM) is characterized as (oxy)kerite. Further investigations with microscopic techniques, including scanning and transmission electron microscopy, and electron microprobe analysis show that fossilization likely occurred during a hydrothermal, post-pegmatitic event, by silicification dominantly in the outermost 1–2 µm of the microfossils. The hydrothermal fluid, derived from the pegmatitic environment, was enriched in SiF4, Al, Ca, Na, K, Cl, and S. The OM shows O enrichment where N and S content is low, indicating simultaneous N and S loss during anaerobic oxidation. Mineralization with Al-silicates starts at the rim of the microfossils, continues in its outer parts into identifiable encrustations and intergrowths of clay minerals, feldspar, Ca-sulfate, Ca-phosphate, Fe-sulfide, and fluorite. Breccias, formed during collapse of some the miarolitic cavities, contain also decaying OM, which released high concentrations of dissolved NH4+, responsible for the late-stage formation of buddingtonite and tobelite-rich muscovite. The age of the fossils can be restricted to the time between the pegmatite formation, at ~1.760 Ga, and the breccia formation at ~ 1.49 Ga. As geological environment for growth of the microorganisms and fossilization we assume a geyser system, in which the essential biological components C, N, S, and P for growth of the orgabisms n the miarolitic caves were derived from microorganisms at the surface. Fossilization was induced by magmatic SiF4-rich fluids. The Volyn occurrence is a prime example of Precambrian fossils and the results underline the importance of cavities in granitic rocks as a possible habitat for microorganisms of the deep biosphere.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4321
Author(s):  
Nawal A. Alarfaj ◽  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Maha F. El-Tohamy ◽  
Gadah A. Al-Hamoud

A unique morphological Sesamum radiatum oil/polyvinylpyrrolidone/gold polymeric bionanocomposite film was synthesized using the S. radiatum oil dispersed in a polymeric polyvinylpyrrolidone (PVP) matrix and decorated with gold nanoparticles (AuNPs). The chemical and physical characteristics as well as the thermal stability of the synthesized bionanocomposite film were investigated using various spectroscopic and microscopic techniques. The microscopic analysis confirmed well dispersed AuNPs in the PVP- S. radiatum oil matrix with particle size of 100 nm. Immunomodulatory and antiprotozoal potentials of the suggested bionanocomposite film were evaluated for lipopolysaccharide-induced BV-2 microglia and against L. amazonensis, L. mexicana promastigotes and T. cruzi epimastigotes, respectively. The results exerted outstanding reduction of inflammatory cytokines’ (IL-6 and TNFα) secretions after pretreatment of bionanocomposite. The bionanocomposite exhibited large inhibitory effects on certain cell signaling components that are related to the activation of expression of proinflammatory cytokines. Additionally, AuNPs and bionanocomposite exhibited excellent growth inhibition of L. mexicana and L. amazonensis promastigotes with IC50 (1.71 ± 1.49, 1.68 ± 0.75) and (1.12 ± 1.10, 1.42 ± 0.69), respectively. However, the nanomaterials showed moderate activity towards T. cruzi. All outcomes indicated promising immunomodulatory, antiprotozoal, and photocatalytic potentials for the synthesized S. radiatum oil/PVP/Au polymeric bionanocomposite.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 679
Author(s):  
Anastasia Frolova ◽  
Nadezhda Aksenova ◽  
Ivan Novikov ◽  
Aitsana Maslakova ◽  
Elvira Gafarova ◽  
...  

The growing applications of tissue engineering technologies warrant the search and development of biocompatible materials with an appropriate strength and elastic moduli. Here, we have extensively studied a collagenous membrane (GSCM) separated from the mantle of the Giant squid Dosidicus Gigas in order to test its potential applicability in regenerative medicine. To establish the composition and structure of the studied material, we analyzed the GSCM by a variety of techniques, including amino acid analysis, SDS-PAGE, and FTIR. It has been shown that collagen is a main component of the GSCM. The morphology study by different microscopic techniques from nano- to microscale revealed a peculiar packing of collagen fibers forming laminae oriented at 60–90 degrees in respect to each other, which, in turn, formed layers with the thickness of several microns (a basketweave motif). The macro- and micromechanical studies showed high values of the Young’s modulus and tensile strength. No significant cytotoxicity of the studied material was found by the cytotoxicity assay. Thus, the GSCM consists of a reinforced collagen network, has high mechanical characteristics, and is non-toxic, which makes it a good candidate for the creation of a scaffold material for tissue engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maho Yagi-Utsumi ◽  
Kazuhiro Aoki ◽  
Hiroki Watanabe ◽  
Chihong Song ◽  
Seiji Nishimura ◽  
...  

AbstractAnhydrobiosis, one of the most extensively studied forms of cryptobiosis, is induced in certain organisms as a response to desiccation. Anhydrobiotic species has been hypothesized to produce substances that can protect their biological components and/or cell membranes without water. In extremotolerant tardigrades, highly hydrophilic and heat-soluble protein families, cytosolic abundant heat-soluble (CAHS) proteins, have been identified, which are postulated to be integral parts of the tardigrades’ response to desiccation. In this study, to elucidate these protein functions, we performed in vitro and in vivo characterizations of the reversible self-assembling property of CAHS1 protein, a major isoform of CAHS proteins from Ramazzottius varieornatus, using a series of spectroscopic and microscopic techniques. We found that CAHS1 proteins homo-oligomerized via the C-terminal α-helical region and formed a hydrogel as their concentration increased. We also demonstrated that the overexpressed CAHS1 proteins formed condensates under desiccation-mimicking conditions. These data strongly suggested that, upon drying, the CAHS1 proteins form oligomers and eventually underwent sol–gel transition in tardigrade cytosols. Thus, it is proposed that the CAHS1 proteins form the cytosolic fibrous condensates, which presumably have variable mechanisms for the desiccation tolerance of tardigrades. These findings provide insights into molecular strategies of organisms to adapt to extreme environments.


Author(s):  
Aqsa Aziz ◽  
Mushtaq Ahmad ◽  
Riaz Ullah ◽  
Ahmed Bari ◽  
Muhammad Yahya Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document