ICRF-193, an Inhibitor of Topoisomerase II, Demonstrates That DNA Replication in Sperm Nuclei Reconstituted in Xenopus Egg Extracts Does Not Require Chromatin Decondensation

1995 ◽  
Vol 217 (2) ◽  
pp. 378-384 ◽  
Author(s):  
Yoshihiro Takasuga ◽  
Toshiwo Andoh ◽  
Jinpei Yamashita ◽  
Tatsuo Yagura
1991 ◽  
Vol 98 (3) ◽  
pp. 271-279
Author(s):  
J. Meier ◽  
K.H. Campbell ◽  
C.C. Ford ◽  
R. Stick ◽  
C.J. Hutchison

Xenopus egg extracts, which support nuclear assembly and DNA replication, were functionally depleted of lamin LIII by inoculating them with monoclonal anti-lamin antibodies. Phase-contrast microscopy and electron-microscopy studies indicated that lamin-depleted extracts supported efficient chromatin decondensation, and assembly of double membrane structures and nuclear pores on demembranated sperm heads. Immunofluorescence microscopy suggests that lamin-antibody complexes are transported across the nuclear membrane but do not assemble into a lamina. These findings were confirmed by immunoblotting analysis of isolated nuclei. Metabolic labelling studies with either biotin-11-dUTP or [32P]dCTP, revealed that nuclei lacking a lamina were unable to initiate DNA replication and that, although such nuclei could import proteins required for DNA replication (e.g. PCNA), these proteins were apparently not organized into replicon clusters.


2003 ◽  
Vol 100 (23) ◽  
pp. 13241-13246 ◽  
Author(s):  
T. A. Prokhorova ◽  
K. Mowrer ◽  
C. H. Gilbert ◽  
J. C. Walter

2004 ◽  
Vol 165 (6) ◽  
pp. 801-812 ◽  
Author(s):  
Wenhui Li ◽  
Soo-Mi Kim ◽  
Joon Lee ◽  
William G. Dunphy

Bloom's syndrome (BS), a disorder associated with genomic instability and cancer predisposition, results from defects in the Bloom's helicase (BLM) protein. In BS cells, chromosomal abnormalities such as sister chromatid exchanges occur at highly elevated rates. Using Xenopus egg extracts, we have studied Xenopus BLM (Xblm) during both unperturbed and disrupted DNA replication cycles. Xblm binds to replicating chromatin and becomes highly phosphorylated in the presence of DNA replication blocks. This phosphorylation depends on Xenopus ATR (Xatr) and Xenopus Rad17 (Xrad17), but not Claspin. Xblm and Xenopus topoisomerase IIIα (Xtop3α) interact in a regulated manner and associate with replicating chromatin interdependently. Immunodepletion of Xblm from egg extracts results in accumulation of chromosomal DNA breaks during both normal and perturbed DNA replication cycles. Disruption of the interaction between Xblm and Xtop3α has similar effects. The occurrence of DNA damage in the absence of Xblm, even without any exogenous insult to the DNA, may help to explain the genesis of chromosomal defects in BS cells.


2002 ◽  
Vol 158 (3) ◽  
pp. 475-485 ◽  
Author(s):  
Miriam Segura-Totten ◽  
Amy K. Kowalski ◽  
Robert Craigie ◽  
Katherine L. Wilson

Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain ∼12 μM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.


1997 ◽  
Vol 138 (3) ◽  
pp. 615-628 ◽  
Author(s):  
Rebecca Heald ◽  
Régis Tournebize ◽  
Anja Habermann ◽  
Eric Karsenti ◽  
Anthony Hyman

In Xenopus egg extracts, spindles assembled around sperm nuclei contain a centrosome at each pole, while those assembled around chromatin beads do not. Poles can also form in the absence of chromatin, after addition of a microtubule stabilizing agent to extracts. Using this system, we have asked (a) how are spindle poles formed, and (b) how does the nucleation and organization of microtubules by centrosomes influence spindle assembly? We have found that poles are morphologically similar regardless of their origin. In all cases, microtubule organization into poles requires minus end–directed translocation of microtubules by cytoplasmic dynein, which tethers centrosomes to spindle poles. However, in the absence of pole formation, microtubules are still sorted into an antiparallel array around mitotic chromatin. Therefore, other activities in addition to dynein must contribute to the polarized orientation of microtubules in spindles. When centrosomes are present, they provide dominant sites for pole formation. Thus, in Xenopus egg extracts, centrosomes are not necessarily required for spindle assembly but can regulate the organization of microtubules into a bipolar array.


1992 ◽  
Vol 29 (2) ◽  
pp. 127-136 ◽  
Author(s):  
J. F. Griveau ◽  
M. Charbonneau ◽  
Y. Blanchard ◽  
D. Lescoat ◽  
D. Le Lannou

Sign in / Sign up

Export Citation Format

Share Document