nuclear assembly
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 7)

H-INDEX

35
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Anat Vivante ◽  
Irit Shoval ◽  
Yuval Garini

Lamin proteins play an essential role in maintaining the nuclear organization and integrity; and lamin A, in particular, plays a major role in the whole volume of the nuclear interior. Although the nucleus is highly organized, it is rather dynamic, it affects crucial nuclear processes and its organization must change as cells progress through the cell cycle. Although many aspects of these changes are already known, the role of lamin A during nuclear assembly and disassembly as well as its underlying mechanisms remains controversial. Here we used live cells imaging and Continuous Photobleaching (CP) method to shed light on the dynamics and mechanisms of lamin A during the cell cycle, combined with imaging flow cytometry measurements, which provides the high-throughput capabilities of flow cytometry with single-cell imaging. As a major analysis tool, we used spatial correlation algorithm for allocating the distribution of lamin A, chromatin and tubulin, as well as their mutual colocalization. Furthermore, we analyzed the distribution of lamin A along the nuclear lamina and in the nucleus interior during the cell cycle. Our results indicate that at the beginning of the cell division that include prophase, metaphase and anaphase, lamin A is distributed throughout the cytoplasm and its concentration in the chromosomal regions is reduced, whereas the spatial correlation between lamin A and tubulin is increased. It implies that lamin A also disassembled in the whole cellular volume. At the telophase and early G1, lamin A is concentrated in the whole volume of the newly formed nuclei of the daughter cells and it assembles to the lamina. We also explored the functional aspects of lamin A during the cell cycle and its binding to the chromatin versus the freely diffusion form. We found that the fraction of the bound proteins of lamin A in the S phase increased, relative to the G1 phase, which means that during replication, the concentration of lamin A on the chromatin increases. All these results shed light on the function of lamin A throughout the cell cycle.


2021 ◽  
Author(s):  
Michael Sean Mauro ◽  
Gunta Celma ◽  
Vitaly Zimyanin ◽  
Kimberley H. Gibson ◽  
Stefanie Redemann ◽  
...  

Nuclear pore complexes (NPCs) are large protein assemblies that facilitate transport of macromolecules across the nuclear envelope (NE) [1, 2]. How thousands of NPCs rapidly assemble to form a functional NE after open mitosis is not known. Recruitment of the outer ring Nup107-160 complex to the NE initiates NPC assembly. The Nup53/93 complex bridges the outer ring to the central channel to form a functional pore [3-6]. Nup53 interacts with the conserved transmembrane nucleoporin Ndc1; however, how Ndc1 contributes to post-mitotic NPC assembly is unclear [7-9]. Here, we use C. elegans embryos to show that the timely formation of a functional NE after mitosis depends on Ndc1. Endogenously tagged Ndc1 is recruited early to the reforming NE and is highly mobile in the nuclear rim. 3D analysis of NE reformation revealed a significant decrease in NPC density in ndc1 deleted embryos: continuous nuclear membranes contained few holes where NPCs are normally located. Nup160 is highly mobile in NEs depleted of Ndc1 and outer ring scaffold components are less enriched at the rim. Nup160 is not recruited to the nuclear rim when both ndc1 and nup53 are absent and nuclear assembly fails. This suggests that Ndc1 and Nup53 function in part in parallel pathways to drive post-mitotic nuclear assembly in vivo. Together, we show that Ndc1 dynamically associates with the NE and promotes stable association of the outer ring scaffold with nascent NEs to facilitate NPC assembly after open mitosis, revealing a previously uncharacterized role for Ndc1 in forming functional NE.


2021 ◽  
Vol 22 (13) ◽  
pp. 7073
Author(s):  
Arie Yehuda Curzon ◽  
Andrey Shirak ◽  
Ayana Benet-Perlberg ◽  
Alon Naor ◽  
Shay Israel Low-Tanne ◽  
...  

Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10−26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy–Weinberg equilibrium (p < 4.2 × 10−3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul J. Hurd ◽  
Kornelia Grübel ◽  
Marek Wojciechowski ◽  
Ryszard Maleszka ◽  
Wolfgang Rössler

AbstractIn the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7–4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.


Author(s):  
Majdi I. Radaideh ◽  
Isaac Wolverton ◽  
Joshua Joseph ◽  
James J. Tusar ◽  
Uuganbayar Otgonbaatar ◽  
...  

Nature ◽  
2020 ◽  
Vol 587 (7833) ◽  
pp. 285-290 ◽  
Author(s):  
Sara Cuylen-Haering ◽  
Mina Petrovic ◽  
Alberto Hernandez-Armendariz ◽  
Maximilian W. G. Schneider ◽  
Matthias Samwer ◽  
...  
Keyword(s):  
Ki 67 ◽  

Nature ◽  
2018 ◽  
Vol 561 (7724) ◽  
pp. 467-468 ◽  
Author(s):  
Matthias Samwer ◽  
Daniel W. Gerlich

2018 ◽  
Author(s):  
Vincent Boudreau ◽  
James Hazel ◽  
Jake Sellinger ◽  
Pan Chen ◽  
Kathryn Manakova ◽  
...  

Throughout development, nuclei must be assembled following every cell division to establish a functional organelle from compact, mitotic chromatin. During nuclear organogenesis, chromatin expands to establish a nucleus of a given size seperate from the cytoplasm. Determining how nuclear organogenesis is regulated is particularly significant in the context of certain cancers in which scaling relationships between cell and nuclear sizes are not maintained. Controlling cell size in vitro using a microfluidics approach, we determined that neither nuclear volume nor surface area scale directly with cell size. Looking to explain differential nuclear scaling relationships, we developed a simple mechano-chemical mathematical model. In simulating biological perturbations in silico, our model predicted crucial roles for nucleo-cytoplasmic trafficking in regulating nuclear expansion and in restricting the recruitment of a potential nuclear surface area factor. In mammalian tissue culture, inhibiting nuclear export increased nuclear expansion rates and reduced the amount of nuclear lamin, a candidate surface area factor, being recruited to assembling nuclei, supporting our model’s predictions. Targeting the principal nuclear export component in the Drosophila syncytial embryo, Embargoed, we show that nuclear expansion rates are also increased in this developmental context, consistent with our model. Using the MS2-reporter system in fly embryos, we demonstrate a role for nuclear export in regulating transcription activation timing and dynamics, suggesting that regulating nuclear assembly is crucial for downstream nuclear function. Taken together, we propose a simple model through which nuclear organogenesis is achieved and demonstrate a role for nuclear export in regulating nuclear assembly.


2018 ◽  
Author(s):  
Kevin Weitemier ◽  
Shannon CK Straub ◽  
Mark Fishbein ◽  
C Donovan Bailey ◽  
Richard C Cronn ◽  
...  

Milkweeds (Asclepias) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present the first nuclear genome and transcriptome assemblies of the common milkweed, Asclepias syriaca. This is the first species in Apocynaceae subfamily Asclepiadoideae with reconstructions of the nuclear, chloroplast, and mitochondrial genomes, and the first in the Apocynaceae to have linkage group information incorporated into the nuclear assembly. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. The progesterone 5β-reductase gene family, a key component of cardenolide production, is likely reduced in Asclepias relative to other Apocynaceae. Scaffolds covering 75 Mbp of the Asclepias assembly formed eleven linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.


Sign in / Sign up

Export Citation Format

Share Document