Generation of Two Homologous and Intronless Zinc-Finger Protein Genes, Zfp352 and Zfp353, with Different Expression Patterns by Retrotransposition

Genomics ◽  
2002 ◽  
Vol 79 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Huang-Hui Chen ◽  
Tiffany Yi-Chen Liu ◽  
Chiu-Jung Huang ◽  
Kong-Bung Choo
2019 ◽  
Vol 20 (23) ◽  
pp. 5863 ◽  
Author(s):  
Zeyun Li ◽  
Gang Li ◽  
Mingxing Cai ◽  
Samaranayaka V.G.N. Priyadarshani ◽  
Mohammad Aslam ◽  
...  

The plant-specific transcription factor gene family, YABBY, belongs to the subfamily of zinc finger protein superfamily and plays an essential regulatory role in lateral organ development. In this study, nine YABBY genes were identified in the pineapple genome. Seven of them were located on seven different chromosomes and the remaining two were located on scaffold 1235. Through protein structure prediction and protein multiple sequence alignment, we found that AcYABBY3, AcYABBY5 and AcYABBY7 lack a C2 structure in their N-terminal C2C2 zinc finger protein structure. Analysis of the cis-acting element indicated that all the seven pineapple YABBY genes contain multiple MYB and MYC elements. Further, the expression patterns analysis using the RNA-seq data of different pineapple tissues indicated that different AcYABBYs are preferentially expressed in various tissues. RT-qPCR showed that the expression of AcYABBY2, AcYABBY3, AcYABBY6 and AcYABBY7 were highly sensitive to abiotic stresses. Subcellular localization in pineapple protoplasts, tobacco leaves and Arabidopsis roots showed that all the seven pineapple YABBY proteins were nucleus localized. Overexpression of AcYABBY4 in Arabidopsis resulted in short root under NaCl treatment, indicating a negative regulatory role of AcYABBY4 in plant resistance to salt stress. This study provides valuable information for the classification of pineapple AcYABBY genes and established a basis for further research on the functions of AcYABBY proteins in plant development and environmental stress response.


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 263
Author(s):  
Timpika Chaiprasert ◽  
Napat Armartmuntree ◽  
Anchalee Techasen ◽  
Chadamas Sakonsinsiri ◽  
Somchai Pinlaor ◽  
...  

Zinc finger protein 423 (ZNF423) is a transcriptional factor involved in the development and progression of cancers but has not yet been examined in cholangiocarcinoma (CCA), an oxidative stress-driven cancer of biliary epithelium. In this study, we hypothesized that oxidative stress mediated ZNF423 expression regulates its downstream genes resulting in CCA genesis. ZNF423 protein expression patterns and 8-oxodG (an oxidative stress marker) formation in CCA tissues were investigated using immunohistochemical analysis. The results showed that ZNF423 was overexpressed in CCA cells compared to normal bile duct cells adjacent of the tumor. Notably, ZNF423 expression was positively correlated with 8-oxodG formation. Moreover, ZNF423 expression in an immortalized cholangiocyte cell line (MMNK1) was increased by hydrogen peroxide-treatment, suggesting that oxidative stress induces ZNF423 expression. To investigate the roles of ZNF423 in CCA progression, ZNF423 mRNA was silenced using specific siRNA in CCA cell lines, KKU-100 and KKU-213. Silencing of ZNF423 significantly inhibits cell proliferation and invasion of both CCA cell lines. Taking all these results together, the present study denoted that ZNF423 is an oxidative stress-responsive gene with an oncogenic property contributing to the regulation of CCA genesis.


Sign in / Sign up

Export Citation Format

Share Document