Review of Skeleton and Habitat of Recent and Fossil Ruminants, by Meike Köhler and Species, Species Concepts and Primate Evolution, by William H. Kimbel and Lawrence B. Martin

1994 ◽  
Vol 27 (6) ◽  
pp. 531-538
Author(s):  
Peter Andrews
1995 ◽  
Vol 16 (1) ◽  
pp. 165-166
Author(s):  
Philip D. Gingerich

2008 ◽  
Vol 16 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Hildegard Kehrer-Sawatzki ◽  
David N. Cooper

Sommerfeltia ◽  
2008 ◽  
Vol 31 (1) ◽  
pp. 161-177 ◽  
Author(s):  
U. Peintner

Cortinarius alpinus as an example for morphological and phylogenetic species concepts in ectomycorrhizal fungiExtensive morphological and molecular analyses of closely related species from alpine, subalpine and montane habitats should enable a comparison of ecological, morphological and phylogenetic species concepts in ectomycorrhizal mushrooms. One fundamental question of this study was whether alpine species really exist, and which criteria, besides the specific habitat, could reliably be used for the de-limitation of such taxa. For this reason, 56 rDNA ITS sequences were generated or downloaded from GenBank for 10 closely related species of Cortinarius subgenus Myxacium, section Myxacium. Several collections were sequenced for each of the following taxa: Cortinarius absarokensis, C. alpinus, C. favrei, C. fennoscandicus, C. grallipes, C. mucosus, C. muscigenus, C. septentrionalis, C. trivialis and C. vernicosus. Moreover, spore statistics were carried out for 38 collections of alpine and subalpine taxa. These data provide clear evidence for C. favrei being a synonym of C. alpinus. C. absarokensis and C. alpinus can clearly be delimited based on pileus diameter and average dry weight per basidiome, even in overlapping habitats, but spore size and shape is not a good distinguishing character. Phylograms have very short branches, and base differences between ITS sequences are generally very low in this group, and give no resolution for the included taxa of this section. Based on these results, species concepts of ectomycorrhizal mushrooms are discussed in detail.


2009 ◽  
Vol 277 (1684) ◽  
pp. 1011-1020 ◽  
Author(s):  
Chet C. Sherwood ◽  
Mary Ann Raghanti ◽  
Cheryl D. Stimpson ◽  
Muhammad A. Spocter ◽  
Monica Uddin ◽  
...  

Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.


Sign in / Sign up

Export Citation Format

Share Document