phylogenetic species
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 52)

H-INDEX

36
(FIVE YEARS 5)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Izabela S. Mendes ◽  
Bruno F. Melo ◽  
Júnio S. Damasceno ◽  
Daniel F. Teixeira ◽  
Daniel C. Carvalho

Hypomasticus copelandii is a Neotropical freshwater fish widely distributed across coastal drainages of southeastern Brazil, a highly impacted region of South America. The interspecific phylogenetic relationships within the genus and the taxonomic status of the species remain uncertain. Using two mitochondrial and one nuclear locus, we performed a phylogenetic, species delimitation, and time-calibrated analyses to test the hypothesis that H. copelandii is a species complex currently delimited by different Atlantic coastal systems. Results indicate that H. copelandii presents two well-delimited genetic lineages: one in the northern drainages of the Jucuruçu, Mucuri and Doce rivers, and the other in the southern region represented by the Paraíba do Sul River Basin. The time-calibrated phylogeny indicated a split between the two genetic lineages at around 2.8 million years ago (Ma), which might be related to headwater capture events during the Plio-Pleistocene. The discovery of a distinct genetic lineage for H. copelandii suggests distinct management plans for the northern and southern drainages. Such hidden diversity within the H. copelandii provides useful information for taxonomy and conservation across a severely impacted region of Brazil.


2021 ◽  
Vol 7 (12) ◽  
pp. 1088
Author(s):  
Junmin Liang ◽  
Lorenzo Pecoraro ◽  
Lei Cai ◽  
Zhilin Yuan ◽  
Peng Zhao ◽  
...  

Armillaria species have a global distribution and play various roles in the natural ecosystems, e.g., pathogens, decomposers, and mycorrhizal associates. However, their taxonomic boundaries, speciation processes, and origin are poorly understood. Here, we used a phylogenetic approach with 358 samplings from Europe, East Asia, and North America to delimit the species boundaries and to discern the evolutionary forces underpinning divergence and evolution. Three species delimitation methods indicated multiple unrecognized phylogenetic species, and biological species recognition did not reflect the natural evolutionary relationships within Armillaria; for instance, biological species of A. mellea and D. tabescens are divergent and cryptic species/lineages exist associated with their geographic distributions in Europe, North America, and East Asia. While the species-rich and divergent Gallica superclade might represent three phylogenetic species (PS I, PS II, and A. nabsnona) that undergo speciation. The PS II contained four lineages with cryptic diversity associated with the geographic distribution. The genus Armillaria likely originated from East Asia around 21.8 Mya in early Miocene when Boreotropical flora (56–33.9 Mya) and the Bering land bridge might have facilitated transcontinental dispersal of Armillaria species. The Gallica superclade arose at 9.1 Mya and the concurrent vicariance events of Bering Strait opening and the uplift of the northern Tibetan plateau might be important factors in driving the lineage divergence.


Phytotaxa ◽  
2021 ◽  
Vol 524 (4) ◽  
pp. 283-292
Author(s):  
XINGGUO TIAN ◽  
SAMANTHA C. KARUNARATHNA ◽  
AUSANA MAPOOK ◽  
JIANCHU XU ◽  
DANFENG BAO ◽  
...  

A new species of Koorchaloma is described based on morphology and multigene phylogenetic analyses of ITS, LSU and RPB2. Phylogenetic analyses showed our strain clusters with K. europaea with moderate statistical support. Koorchaloma oryzae sp. nov. is morphologically similar to K. europaea, but it can be distinguished by the conidiophores and conidia, while ITS pairwise nucleotide comparison of these two species also revealed differences. Koorchaloma oryzae is compared with all known Koorchaloma species, and a key to Koorchaloma species is provided. Genealogical concordance phylogenetic species recognition analysis (PHI test) results of the new species and closely related species are also given.


2021 ◽  
Vol 20 (11) ◽  
pp. 1399-1439
Author(s):  
Bálint Dima ◽  
Kare Liimatainen ◽  
Tuula Niskanen ◽  
Dimitar Bojantchev ◽  
Emma Harrower ◽  
...  

AbstractSection Anomali is a species-rich group in North America belonging to Cortinarius, the most diverse genus in the Agaricales. This study is based on extensive morphological investigations and molecular methods using 191 nrDNA ITS sequence data and recovered 43 phylogenetic species from which 14 are described here as new to science. We sequenced ten type materials which belonged to eight species. The synonymy of C. caesiellus with C. albidipes and C. copakensis with C. albocyaneus is proposed here. The North American occurrence of four species (C. albocyaneus, C. anomalus, C. caninus, and C. tabularis), so far known only from Europe, was confirmed. Thirteen species were not formally described here due to lack of relevant information. An identification key to the known Anomali species in North America is provided.


2021 ◽  
Vol 58 (04) ◽  
pp. 1301-1313
Author(s):  
Imran Ul Haq

Neopestalotiopsis species are known to be involved in plant diseases as associated pathogens. The taxonomic identification of the fungal group Neopestalotiopsisis little bit difficult due to its complex evolutionary history. In the present study, seven fungal isolates were investigated from canker-affected guava plants. The phylogeny for generic placement of these isolates was analyzed to validate them as Neopestalotiopsis genus by phylogenetic signals from the 28S nrRNA region (LSU). Generated morphological data was segregated as new morpho-species of the Neopestalotiopsis genus. Hence, the internal transcribed spacer (ITS), Translation elongation factor 1-α (TEF1-α) and Tubulin (TUB) genic region of these isolates were studied in juxtaposition with morphological data to resolve species limits. Both phylogenetic and morphological data revealed four novel species of the Neopestalotiopsis genus out of seven isolates studied. These Neopestalotiopsis species could be of great significance for further investigation as putative pathogens associated with canker or scabby canker disease in guava.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ana Obradović ◽  
Jelena Stepanovic ◽  
Vesna Krnjaja ◽  
Aleksandra Bulajic ◽  
Goran Stanković ◽  
...  

The cosmopolitan species Fusarium graminearum Schwabe directly reduces yield, as well as grain quality of cereals, due to its ability to synthesize mycotoxins. Previously it was considered to be one species occurring on all continents. However, phylogenetic analysis employing the GCPSR method (Genealogical Concordance Phylogenetic Species Recognition) revealed the existence of 15 phylogenetic species within what is now recognised as the Fusarium graminearum Species Complex (FGSC) (Sarver et al. 2011). During 1996-2008, a MRIZP collection of FGSC isolates was established and isolates originating from wheat (5), maize (3) and barely (2) were selected for further study. Morphological features including the appearance of colonies and macroconidia (average size 38.5-53.1 × 4.6-5.4 µm, No 50) of all 10 isolates on PDA were consistent with descriptions of F. graminearum (O’Donnell et al. 2004, Leslie and Summerell 2006). Total DNA was isolated from mycelium removed from 7-day old colonies of single-spore isolates grown on PDA using the DNeasy Plant Mini Kit (Qiagen, Hilden). Further identification was based on amplification and sequencing of elongation factor TEF−1α, histone H3 and β−tubulin in both directions, with primers ef1/ef2, H3-1a/H3-1b and T1/T22, respectively (Jacobs et al. 2010). The sequences were deposited in NCBI under accession numbers MF974399 - MF974408 (TEF−1α), MG063783 - MG063792 (β−tubulin) and MF999139 - MF999148 (histone H3). Sequence analysis was performed using BLAST while genetic similarity was calculated using MEGA 6.0 software. Isolate 1339 originating from wheat (collected at the locality of Kikinda in 2006), shared 100% nucleotide identity with TEF−1α (DQ459745), histone H3 (DQ459728) and β−tubulin (DQ459643) of F. vorosii isolate NRRL37605 (Starkey et al. 2007). The remaining nine isolates were identified as F. graminearum as they shared 99% to 100% nucleotide similarity with F. graminearum NRRL 28439 (O’Donnell et al. 2004). Pathogenicity was tested using artificial inoculations of spikes during wheat flowering (Mesterhazy et al. 1999). Thirty classes were inoculated with each isolate, in three replicates. Inoculum was prepared from 7-day colonies on PDA, and 30 ml of a conidia suspension (1x105 conidia/ml) was used. Control plants were inoculated with sterile water. Three weeks after inoculation, typical Fusarium head blight symptoms were visible on inoculated plants, from which all 10 isolates were successfully reisolated. Control spikes remained symptomless. Disease severity was estimated on the 1-7 scale (Blandino et al. 2012). Average pathogenicity of the F. vorosii isolate 1339 was 1.9, and 2.4 -5.1 of F. graminearum isolates. Toxin production was determined using gas chromatography-tandem mass spectrometry. Kernels inoculated with the 10 isolates were ground and tested for the presence of deoxynivalenol (DON) and its acetyl derivatives 3ADON, 15ADON and NIV. F. vorosii isolate 1339 possessed the 15ADON chemotype, as well as eight F. graminearum isolates, while only one F. graminearum isolate was 3ADON chemotype. To date, F. vorosii has only been detected in Hungary on wheat (Toth et al. 2005) and Korea on barley, corn and rice (Lee et al. 2016). This is the first report of F. vorosii in Serbia, which is of great importance, because it indicates the spread of this toxigenic species. Further studies should be focused on determining the distribution, aggressiveness and toxicological profile of F. vorosii.


2021 ◽  
Vol 7 (7) ◽  
pp. 507
Author(s):  
Sandra Hilário ◽  
Micael F. M. Gonçalves ◽  
Artur Alves

DNA sequence analysis has been of the utmost importance to delimit species boundaries in the genus Diaporthe. However, the common practice of combining multiple genes, without applying the genealogical concordance criterion has complicated the robust delimitation of species, given that phylogenetic incongruence between loci has been disregarded. Despite the several attempts to delineate the species boundaries in the D. eres complex, the phylogenetic limits within this complex remain unclear. In order to bridge this gap, we employed the Genealogical Phylogenetic Species Recognition principle (GCPSR) and the coalescent-based model Poisson Tree Processes (PTPs) and evaluated the presence of recombination within the D. eres complex. Based on the GCPSR principle, presence of incongruence between individual gene genealogies, i.e., conflicting nodes and branches lacking phylogenetic support, was evident. Moreover, the results of the coalescent model identified D. eres complex as a single species, which was not consistent with the current large number of species within the complex recognized in phylogenetic analyses. The absence of reproductive isolation and barriers to gene flow as well as the high haplotype and low nucleotide diversity indices within the above-mentioned complex suggest that D. eres constitutes a population rather than different lineages. Therefore, we argue that a cohesive approach comprising genealogical concordance criteria and methods to detect recombination must be implemented in future studies to circumscribe species in the genus Diaporthe.


2021 ◽  
pp. 274-280
Author(s):  
Halyna Morhun ◽  
Mikhail Son ◽  
Serge Utevsky

Molluscs of the genus Corbicula are well-known invasive bivalves found all over the world. These ecologically important clams are characterised by a wide range of habitats (both brackish waters and freshwater environments) and by contrasting modes of reproduction in native ranges (including sexual and asexual modes) and in invasive ranges (asexual mode). The asexual freshwater Corbicula reproduces through androgenetic fertilization, also termed “egg parasitism”, where the oocyte nucleus is replaced by the spermatozoon nucleus, yet the mitochondria are inherited from the mother cell. This results in a mismatch between the genetic material of the nucleus and mitochondria (and, accordingly, with the external morphology of the shell). In addition, the low nucleotide diversity in the genus Corbicula challenges the delimitation of separate species, thus it is difficult to apply the traditional taxonomic and phylogenetic species criteria to Corbicula populations.


Sign in / Sign up

Export Citation Format

Share Document