Intracellular Volumes and Membrane Permeability in Rat Hearts During Prolonged Hypothermic Preservation with St Thomas and University of Wisconsin Solutions

1998 ◽  
Vol 30 (7) ◽  
pp. 1329-1339 ◽  
Author(s):  
Nadir Askenasy ◽  
Gil Navon
2020 ◽  
pp. 1029-1038
Author(s):  
Shintaro Takago ◽  
Isao Matsumoto ◽  
Hiroki Kato ◽  
Naoki Saito ◽  
Hideyasu Ueda ◽  
...  

Antifreeze proteins are an effective additive for low-temperature preservation of solid organs. Here, we compared static hypothermic preservation with and without antifreeze glycoprotein (AFGP), followed by nonfreezing cryopreservation of rat hearts. The heart was surgically extracted and immersed in one of the cardioplegia solutions after cardiac arrest. Control rat hearts (n=6) were immersed in University of Wisconsin (UW) solution whereas AFGP-treated hearts (AFGP group) (n=6) were immersed in UW solution containing 500 μg/ml AFGP. After static hypothermic preservation, a Langendorff apparatus was used to reperfuse the coronary arteries with oxygenated Krebs-Henseleit solution. After 30, 60, 90, and 120 min, the heart rate (HR), coronary flow (CF), cardiac contractile force (max dP/dt), and cardiac diastolic force (min dP/dt) were measured. Tissue water content (TWC) and tissue adenosine triphosphate (ATP) levels in the reperfused preserved hearts were also assessed. All the parameters were compared between the control and AFGP groups. Compared with the control group, the AFGP group had significantly (p<0.05) higher values of the following parameters: HR at 60, 90, and 120 min; CF at all four time points; max dP/dt at 90 min; min dP/dt at 90 and 120 min; and tissue ATP levels at 120 min. TWC did not differ significantly between the groups. The higher HR, CF, max dP/dt, min dP/dt, and tissue ATP levels in the AFGP compared with those in control hearts suggested that AFGP conferred superior hemodynamic and metabolic functions. Thus, AFGP might be a useful additive for the static/nonfreezing hypothermic preservation of hearts.


Life Sciences ◽  
2018 ◽  
Vol 210 ◽  
pp. 47-54
Author(s):  
Wei-Ran Gen ◽  
Chun-Yan Fu ◽  
Hui-Hui He ◽  
Ming-Zhi Zheng ◽  
Lin-Lin Wang ◽  
...  

1995 ◽  
Vol 5 (2) ◽  
pp. 110-117
Author(s):  
Hiroyuki Orita ◽  
Manabu Fukasawa ◽  
Hideaki Uchino ◽  
Kana Fukui ◽  
Minoru Kohi ◽  
...  

AbstractWe evaluated the modulation of the viability of immature cardiac myocytes by cardiac fibroblasts after hypothermic preservation using three types of storage solutions—saline, University of Wisconsin solution, and MCDB 107 medium. Cardiac myocytes and fibroblasts were isolated from neonatal rat ventricles, and cultures of myocytes only or co-cultures with fibroblasts (myocyte: fibroblast 2:1) were established. On the fourth day of culture, the cultures were incubated at 4 °C for 6, 12, 18 and 24 hours in the different storage solutions. Enzymes were measured in the storage solutions immediately before and after hypothermic incubation. The cultures were then incubated for an additional 24 hours at 37 °C to evaluate the recovery of the myocyte beating rate. The myocyte beating rate in the co-culture groups showed significantly higher recovery ratios than the corresponding groups in which only myocytes were cultured. Complete recovery was observed in the group co-cultured in MCDB medium 24 hours after hypothermic incubation (83.4% of control—beating rate prior to hypothermic incubation) compared to the other co-cultured groups (15.4, 0%, respectively). Release of enzymes in the co-cultures was significantly suppressed compared to the cultured myocytes, and the greatest suppression was found after 24 hours of incubation in MCDB medium (CPK: 36.6 mIU/flask, LDH: 281.2 mIU/flask) compared to the other two co-cultured groups (CPK: 181.1, 281.1; LDH: 501.7, 773.2). Cardiac fibroblasts diminished myocytic injury after hypothermic preservation using various storage solutions, in which MCDB 107 medium showed the best overall protective effect. Thus, cardiac fibroblasts may play an important role in controlling myocytic viability under various hypothermic conditions.


Sign in / Sign up

Export Citation Format

Share Document