cardiac contractile
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 64)

H-INDEX

53
(FIVE YEARS 4)

2022 ◽  
Vol 117 (1) ◽  
Author(s):  
Gerd Heusch

AbstractHeart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.


2022 ◽  
Author(s):  
Plansky Hoang ◽  
Shiyang Sun ◽  
Bearett A. Tarris ◽  
Zhen Ma

Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned hiPSC colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from human induced pluripotent stem cells (hiPSCs) and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on “organogenesis-by-design” by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 881 ◽  
Author(s):  
Yogi Umbarawan ◽  
Ryo Kawakami ◽  
Mas Rizky A. A. Syamsunarno ◽  
Hideru Obinata ◽  
Aiko Yamaguchi ◽  
...  

Cardiac dysfunction is induced by multifactorial mechanisms in diabetes. Deranged fatty acid (FA) utilization, known as lipotoxicity, has long been postulated as one of the upstream events in the development of diabetic cardiomyopathy. CD36, a transmembrane glycoprotein, plays a major role in FA uptake in the heart. CD36 knockout (CD36KO) hearts exhibit reduced rates of FA transport with marked enhancement of glucose use. In this study, we explore whether reduced FA use by CD36 ablation suppresses the development of streptozotocin (STZ)-induced diabetic cardiomyopathy. We found that cardiac contractile dysfunction had deteriorated 16 weeks after STZ treatment in CD36KO mice. Although accelerated glucose uptake was not reduced in CD36KO-STZ hearts, the total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. The isotopomer analysis with 13C6-glucose revealed that accelerated glycolysis, estimated by enrichment of 13C2-citrate and 13C2-malate, was markedly suppressed in CD36KO-STZ hearts. Levels of ceramides, which are cardiotoxic lipids, were not elevated in CD36KO-STZ hearts compared to wild-type-STZ ones. Furthermore, increased energy demand by transverse aortic constriction resulted in synergistic exacerbation of contractile dysfunction in CD36KO-STZ mice. These findings suggest that CD36KO-STZ hearts are energetically compromised by reduced FA use and suppressed glycolysis; therefore, the limitation of FA utilization is detrimental to cardiac energetics in this model of diabetic cardiomyopathy.


2021 ◽  
Vol 14 (12) ◽  
pp. 1276
Author(s):  
Monika Skrzypiec-Spring ◽  
Joanna Urbaniak ◽  
Agnieszka Sapa-Wojciechowska ◽  
Jadwiga Pietkiewicz ◽  
Alina Orda ◽  
...  

Matrix metalloproteinase 2 (MMP-2) is activated in hearts upon ischemia-reperfusion (IR) injury and cleaves sarcomeric proteins. It was shown that carvedilol and nebivolol reduced the activity of different MMPs. Hence, we hypothesized that they could reduce MMPs activation in myocytes, and therefore, protect against cardiac contractile dysfunction related with IR injury. Isolated rat hearts were subjected to either control aerobic perfusion or IR injury: 25 min of aerobic perfusion, followed by 20 min global, no-flow ischemia, and reperfusion for 30 min. The effects of carvedilol, nebivolol, or metoprolol were evaluated in hearts subjected to IR injury. Cardiac mechanical function and MMP-2 activity in the heart homogenates and coronary effluent were assessed along with troponin I content in the former. Only carvedilol improved the recovery of mechanical function at the end of reperfusion compared to IR injury hearts. IR injury induced the activation and release of MMP-2 into the coronary effluent during reperfusion. MMP-2 activity in the coronary effluent increased in the IR injury group and this was prevented by carvedilol. Troponin I levels decreased by 73% in IR hearts and this was abolished by carvedilol. Conclusions: These data suggest that the cardioprotective effect of carvedilol in myocardial IR injury may be mediated by inhibiting MMP-2 activation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. M. Kamel ◽  
C. J. M. van Opbergen ◽  
C. D. Koopman ◽  
A. O. Verkerk ◽  
B. J. D. Boukens ◽  
...  

AbstractThe heterozygous Phospholamban p.Arg14del mutation is found in patients with dilated or arrhythmogenic cardiomyopathy. This mutation triggers cardiac contractile dysfunction and arrhythmogenesis by affecting intracellular Ca2+ dynamics. Little is known about the physiological processes preceding induced cardiomyopathy, which is characterized by sub-epicardial accumulation of fibrofatty tissue, and a specific drug treatment is currently lacking. Here, we address these issues using a knock-in Phospholamban p.Arg14del zebrafish model. Hearts from adult zebrafish with this mutation display age-related remodeling with sub-epicardial inflammation and fibrosis. Echocardiography reveals contractile variations before overt structural changes occur, which correlates at the cellular level with action potential duration alternans. These functional alterations are preceded by diminished Ca2+ transient amplitudes in embryonic hearts as well as an increase in diastolic Ca2+ level, slower Ca2+ transient decay and longer Ca2+ transients in cells of adult hearts. We find that istaroxime treatment ameliorates the in vivo Ca2+ dysregulation, rescues the cellular action potential duration alternans, while it improves cardiac relaxation. Thus, we present insight into the pathophysiology of Phospholamban p.Arg14del cardiomyopathy.


Author(s):  
Edward C. T. Waters ◽  
Friedrich Baark ◽  
Zilin Yu ◽  
Filipa Mota ◽  
Thomas R. Eykyn ◽  
...  

Abstract Purpose To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. Procedures The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50–150 kBq.min−1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 μm), validated by parallel measures of cardiac oxidative stress. Results [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. Conclusion [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.


Author(s):  
Jonathan A. Ritchie ◽  
Jun Quan Ng ◽  
Ole J. Kemi

Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher-level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only 2 studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by 2 main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher-level cognitive processing.


2021 ◽  
Vol 31 (3) ◽  
pp. 609-614
Author(s):  
Diana TINT ◽  
◽  
Sorin MICU ◽  

Aim: The purpose of this study is to present the first Romanian case-series of patients with heart failure with reduced ejection fraction (HFrEF), supported with the newest generation of cardiac contractility modulation (CCM) device. Methods and results: 16 patients (15 men), aged 66.6±7.49 years, were supported with OPTIMIZER® smart IPG CCMX10 device and followed-up for an average duration of 385.75±326.32 days. The etiology of HF was ischemic in 13 patients (81%), 8 patients (50%) had atrial fibrillation, mean creatinine clearance value was 55.8±13.87 ml/min, and 5 patients (31,2%) had diabetes mellitus. All patients were supported with an implanted cardio verter-defibrillator (ICD), while 5 patients (31.2%) had cardiac resynchronization therapy (CRT) on top. The pharma cological treatment has been optimized in all patients. Six months after implantation, the LVEF has increased from 25.93%±6.21 to 35.5%±4.31 (p=0.00002), NYHA class improved from 3.18±0.4 to 1.83±0.38 (p<0.0001), and exercise tolerance evaluated with 6 minute walking test (6MWT) increased (from 321.87±70.63m to 521.41±86.43m; p<0,00001). Three patients (18,7%) died during the follow-up period after 48, 108 and 545 days (one non-cardiac death). Conclusions: Cardiac contractile therapy is a feasible, safe, and useful therapy for patients with HFrEF whose symptomatology is not improved with optimal standard therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Liu ◽  
João S. Soares ◽  
John Walmsley ◽  
David S. Li ◽  
Samarth Raut ◽  
...  

AbstractMyocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15–20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.


Sign in / Sign up

Export Citation Format

Share Document