Intracellular Free Calcium and Mitochondrial Membrane Potential in Ischemia/Reperfusion and Preconditioning

2000 ◽  
Vol 32 (7) ◽  
pp. 1223-1238 ◽  
Author(s):  
Kari V Ylitalo ◽  
Antti Ala-Rämi ◽  
Erkki V Liimatta ◽  
Keijo J Peuhkurinen ◽  
Ilmo E Hassinen
2019 ◽  
Vol 25 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Leila Hosseini ◽  
Manouchehr S. Vafaee ◽  
Reza Badalzadeh

Ischemic heart diseases are the major reasons for disability and mortality in elderly individuals. In this study, we tried to examine the combined effects of nicotinamide mononucleotide (NMN) preconditioning and melatonin postconditioning on cardioprotection and mitochondrial function in ischemia/reperfusion (I/R) injury of aged male rats. Sixty aged Wistar rats were randomly allocated to 5 groups, including sham, control, NMN-receiving, melatonin-receiving, and combined therapy (NMN+melatonin). Isolated hearts were mounted on Langendorff apparatus and then underwent 30-minue ligation of left anterior descending coronary artery to induce regional ischemic insult, followed by 60 minutes of reperfusion. Nicotinamide mononucleotide (100 mg/kg/d intraperitoneally) was administered for every other day for 28 days before I/R. Melatonin added to perfusion solution, 5 minutes prior to the reperfusion up to 15 minutes early reperfusion. Myocardial hemodynamic and infarct size (IS) were measured, and the left ventricles samples were obtained to evaluate cardiac mitochondrial function and oxidative stress markers. Melatonin postconditioning and NMN had significant cardioprotective effects in aged rats; they could improve hemodynamic parameters and reduce IS and lactate dehydrogenase release compared to those of control group. Moreover, pretreatment with NMN increased the cardioprotection by melatonin. All treatments reduced oxidative stress and mitochondrial reactive oxygen species (ROS) levels and improved mitochondrial membrane potential and restored NAD+/NADH ratio. The effects of combined therapy on reduction of mitochondrial ROS and oxidative status and improvement of mitochondrial membrane potential were greater than those of alone treatments. Combination of melatonin and NMN can be a promising strategy to attenuate myocardial I/R damages in aged hearts. Restoration of mitochondrial function may substantially contribute to this cardioprotection.


2001 ◽  
Vol 281 (3) ◽  
pp. H1295-H1303 ◽  
Author(s):  
Meifeng Xu ◽  
Yigang Wang ◽  
Ahmar Ayub ◽  
Muhammad Ashraf

Mitochondrial membrane potential (ΔΨm) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K+ (mitoKATP) channel activation prevents the collapse of ΔΨm in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed ΔΨm, as monitored by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome cimmunostaining. Activation of mitoKATP channel with diazoxide (100 μmol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized ΔΨm. This protection was blocked by 5-hydroxydecanoate (500 μmol/l), a mitoKATPchannel-selective inhibitor, but not by HMR-1098 (30 μmol/l), a putative sarcolemmal KATP channel-selective inhibitor. Dissipation of ΔΨm also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts ΔΨm and induces apoptosis, which are prevented by the activation of the mitoKATP channel. This further emphasizes the therapeutic significance of mitoKATP channel agonists in the prevention of ischemia-reperfusion cell injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mojdeh Salehnia ◽  
Virpi Töhönen ◽  
Saeed Zavareh ◽  
Jose Inzunza

The aim of this study was to evaluate mitochondrial alteration and ATP content of germinal vesicle (GV) oocytes isolated from fresh and vitrified ovaries. After superovulation, the ovaries from adult mice were collected and divided into control and vitrified groups. GV oocytes were isolated mechanically from each group. Half were cultured for 24 hours and their maturation was assessed. Metaphase II oocytes were collected and submitted toin vitrofertilization and their fertilization rates and development to the blastocyst stage were evaluated. In the remaining GV oocytes, ATP levels were quantified, and mitochondrial distribution, mitochondrial membrane potential, and intracellular free calcium were detected with rhodamine 123, JC-1 and Flou-4 AM staining, using laser-scanning confocal microscopy. Maturation and fertilization rates of GV oocytes and the developmental rates of subsequent embryos were significantly lower in vitrified samples (P<0.05). The ATP content and Ca2+levels differed significantly in fresh and vitrified GV oocytes (P<0.05). Most mitochondria were seen as large and homogenous aggregates (66.6%) in fresh GV oocytes compared to vitrified oocytes (50%). No significant differences in mitochondrial membrane potential were found between the groups. The lower maturation and fertilization rates of GV oocytes from vitrified ovaries may be due to changes in their mitochondrial function and distribution.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yumin Huang ◽  
Yingge Wang ◽  
Zuowei Duan ◽  
Jingyan Liang ◽  
Yijun Xu ◽  
...  

AbstractStudies have greatly explored the role of microRNAs (miRNAs) in cerebral ischemia/reperfusion injury (CI/RI). But the specific mechanism of miR-326-5p in CI/RI is still elusive. Hence, this study was to unmask the mechanism of miR-326-5p/signal transducer and activator of transcription-3 (STAT3) axis in CI/RI. Two models (oxygen and glucose deprivation [OGD] in primary rat cortical neurons and middle cerebral artery occlusion [MCAO] in Sprague–Dawley rats) were established to mimic CI/RI in vitro and in vivo, respectively. Loss- and gain-of function assays were performed with OGD-treated neurons and with MCAO rats. Afterward, viability, apoptosis, oxidative stress and mitochondrial membrane potential in OGD-treated neurons were tested, as well as pathological changes, apoptosis and mitochondrial membrane potential in brain tissues of MCAO rats. Mitofusin-2 (Mfn2), miR-326-5p and STAT3 expression in OGD-treated neurons and in brain tissues of MCAO rats were detected. Mfn2 and miR-326-5p were reduced, and STAT3 was elevated in OGD-treated neurons and brain tissues of MCAO rats. miR-326-5p targeted and negatively regulated STAT3 expression. Restoring miR-326-5p or reducing STAT3 reinforced viability, inhibited apoptosis and oxidative stress, increased mitochondrial membrane potential and increased Mfn2 expression in OGD-treated neurons. Up-regulating miR-326-5p or down-regulating STAT3 relieved pathological changes, inhibited apoptosis and elevated mitochondrial membrane potential and Mfn2 expression in brain tissues of rats with MCAO. This study elucidates that up-regulated miR-326-5p or down-regulated STAT3 protects against CI/RI by elevating Mfn2 expression.


2020 ◽  
Author(s):  
Saijun Zhou ◽  
Zhenxing Meng ◽  
Shumin Xiao ◽  
Ting Cheng ◽  
Shuai Huang ◽  
...  

Abstract BackgroundMyocardial ischemia/reperfusion (I/R) injury is one of the most important reasons for death of coronary heart disease after vascular recanalization. New evidences have shown that β2-glycoprotein I (β2GPI) plays a protective role in cardiovascular diseases. This study aims to evaluate the effects of reduced β2GPI (R-β2GPI), one form of β2GPI, on myocardial I/R injury, and to explore related mechanisms. MethodsThe in vivo myocardial I/R models of Sprague Dawley rats and in vitro hypoxia/reoxygenation(H/R) models of H9c2 cells were established. The myocardial infarction and morphological changes in SD rats were measured by the TTC staining and HE staining. Creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) levels in plasma were detected by ELISA Assay kit. Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) method and caspase-3 colorimetric assay kit were used to determine myocardial apoptosis. Intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential of H9c2 cells were measured by fluorescent probe DCFH-DA and JC-1 fluorescent staining respectively. To evaluate cell damage, cell viability was assessed by determining the release of lactate dehydrogenase (LDH). The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to detect the expression levels of total Akt and phosphorylated Akt as well as the expression levels of total GSK-3βand phosphorylated GSK-3β in H9c2 cells. ResultsOur results suggested that R-β2GPI improved I/R model rats’ heart function, decreased infarct size, reduced serum CK-MB, cTnI levels, cell apoptosis and caspase3 activity. In vitro, R-β2GPI decreased LDH leakage, reduced ROS generation, maintained mitochondrial membrane potential and increased bcl-2/bax mRNA ratio; increased phosphorylation of Akt and GSK-3β in H9c2 cells following Hypoxia/Reoxygenation (H/R) jnjury. ConclusionR-β2GPI alleviated myocardial I/R (or H/R) injury by reducing oxidative stress and inhibiting mitochondrial apoptotic pathway via increasing the phosphorylation of Akt/GSK-3β.


Sign in / Sign up

Export Citation Format

Share Document