nicotinamide mononucleotide
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 151)

H-INDEX

41
(FIVE YEARS 11)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Chidambaram Ramanathan ◽  
Thomas Lackie ◽  
Drake H. Williams ◽  
Paul S. Simone ◽  
Yufeng Zhang ◽  
...  

As a redox-sensitive coenzyme, nicotinamide adenine dinucleotide (NAD+) plays a central role in cellular energy metabolism and homeostasis. Low NAD+ levels are linked to multiple disease states, including age-related diseases, such as metabolic and neurodegenerative diseases. Consequently, restoring/increasing NAD+ levels in vivo has emerged as an important intervention targeting age-related neurodegenerative diseases. One of the widely studied approaches to increase NAD+ levels in vivo is accomplished by using NAD+ precursors, such as nicotinamide mononucleotide (NMN). Oral administration of NMN has been shown to successfully increase NAD+ levels in a variety of tissues; however, it remains unclear whether NMN can cross the blood–brain barrier to increase brain NAD+ levels. This study evaluated the effects of oral NMN administration on NAD+ levels in C57/B6J mice brain tissues. Our results demonstrate that oral gavage of 400 mg/kg NMN successfully increases brain NAD+ levels in mice after 45 min. These findings provide evidence that NMN may be used as an intervention to increase NAD+ levels in the brain.


2022 ◽  
Author(s):  
Tao Wang ◽  
Fei Zhang ◽  
Wuxun Peng ◽  
Lei Wang ◽  
Jian Zhang ◽  
...  

Oxidative stress damage is a common problem in bone marrow mesenchymal stem cell (BMSC) transplantation. Under stress conditions, the mitochondrial function of BMSCs is disrupted, which accelerates senescence and apoptosis of BMSCs, ultimately leading to poor efficacy. Therefore, improving mitochondrial function and enhancing the anti-oxidative stress capacity of BMSCs may be an effective way of improving the survival rate and curative effect of BMSCs. In this study, we have confirmed that overexpression of nicotinamide mononucleotide adenylyl transferase 3 (NMNAT3) improves mitochondrial function and resistance to stress-induced apoptosis in BMSCs. We further revealed the mechanism of NMNAT3-mediated resistance to stress-induced apoptosis in BMSCs. We increased the level of nicotinamide adenine dinucleotide (NAD+) by overexpressing NMNAT3 in BMSCs and found that it could significantly increase the activity of silent mating type information regulation 2 homolog 3 (Sirt3) and significantly decrease the acetylation levels of Sirt3-dependent deacetylation-related proteins isocitrate dehydrogenase 2 (Idh2) and Forkhead-box protein O3a (FOXO3a). These findings show that NMNAT3 may increase the activity of Sirt3 by increasing NAD+ levels. Our results confirm that the NMNAT3-NAD+-Sirt3 axis is a potential mechanism for improving mitochondrial function and enhancing anti-oxidative stress of BMSCs. In this study, we take advantage of the role of NMNAT3 in inhibiting stress-induced apoptosis of BMSCs and provide new methods and ideas for breaking through the bottleneck of transplantation efficacy of BMSCs in the clinic.


Author(s):  
Cailian Zhou ◽  
Jiao Feng ◽  
Jing Wang ◽  
Ning Hao ◽  
Xin Wang ◽  
...  

Design the adenosine phosphate hydrolysis (APH) pathway multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide (NMN) in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Do-Wan Shim ◽  
Hyo-Joung Cho ◽  
Inhwa Hwang ◽  
Taek-Yeol Jung ◽  
Hyun-Seok Kim ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) is an important cofactor in many redox and non-redox NAD+-consuming enzyme reactions. Intracellular NAD+ level steadily declines with age, but its role in the innate immune potential of myeloid cells remains elusive. In this study, we explored whether NAD+ depletion by FK866, a highly specific inhibitor of the NAD salvage pathway, can affect pattern recognition receptor-mediated responses in macrophages. NAD+-depleted mouse bone marrow-derived macrophages (BMDMs) exhibited similar levels of proinflammatory cytokine production in response to LPS or poly (I:C) stimulation compared with untreated cells. Instead, FK866 facilitated robust caspase-1 activation in BMDMs in the presence of NLRP3-activating signals such as ATP and nigericin, a potassium ionophore. However, this FK866-mediated caspase-1 activation was completely abolished in Nlrp3-deficient macrophages. FK866 plus nigericin stimulation caused an NLRP3-dependent assembly of inflammasome complex. In contrast, restoration of NAD+ level by supplementation with nicotinamide mononucleotide abrogated the FK866-mediated caspase-1 cleavage. FK866 did not induce or increase the expression levels of NLRP3 and interleukin (IL)-1β but drove mitochondrial retrograde transport into the perinuclear region. FK866-nigericin-induced mitochondrial transport is critical for caspase-1 cleavage in macrophages. Consistent with the in vitro experiments, intradermal coinjection of FK866 and ATP resulted in robust IL-1β expression and caspase-1 activation in the skin of wild-type, but not Nlrp3-deficient mice. Collectively, our data suggest that NAD+ depletion provides a non-transcriptional priming signal for NLRP3 activation via mitochondrial perinuclear clustering, and aging-associated NAD+ decline can trigger NLRP3 inflammasome activation in ATP-rich environments.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jiaqi Liu ◽  
Xianzun Tao ◽  
Yi Zhu ◽  
Chong Li ◽  
Kai Ruan ◽  
...  

Gliomas are highly malignant brain tumors with poor prognosis and short survival. NAD+ has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD+ synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a Drosophila glial neoplasia model and discovered the genetic requirement for NAD+ synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells. Overexpressing enzymatically active NMNAT significantly promotes glial neoplasia growth and reduces animal viability. Mechanistic analysis suggests that NMNAT interferes with DNA damage-p53-caspase-3 apoptosis signaling pathway by enhancing NAD+-dependent posttranslational modifications (PTMs) poly(ADP-ribosyl)ation (PARylation) and deacetylation of p53. Since PARylation and deacetylation reduce p53 pro-apoptotic activity, modulating p53 PTMs could be a key mechanism by which NMNAT promotes glioma growth. Our findings reveal a novel tumorigenic mechanism involving protein complex formation of p53 with NAD+ synthetic enzyme NMNAT and NAD+-dependent PTM enzymes that regulates glioma growth.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
David Sokolov ◽  
Emily R Sechrest ◽  
Yekai Wang ◽  
Connor Nevin ◽  
Jianhai Du ◽  
...  

Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, transcriptomic and immunostaining approaches reveal dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration and suggests a yet-undescribed role for NMNAT1 in gene regulation during photoreceptor terminal differentiation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13224
Author(s):  
Ashraf Nahle ◽  
Yemisi Deborah Joseph ◽  
Sandra Pereira ◽  
Yusaku Mori ◽  
Frankie Poon ◽  
...  

The NAD-dependent deacetylase SIRT1 improves β cell function. Accordingly, nicotinamide mononucleotide (NMN), the product of the rate-limiting step in NAD synthesis, prevents β cell dysfunction and glucose intolerance in mice fed a high-fat diet. The current study was performed to assess the effects of NMN on β cell dysfunction and glucose intolerance that are caused specifically by increased circulating free fatty acids (FFAs). NMN was intravenously infused, with or without oleate, in C57BL/6J mice over a 48-h-period to elevate intracellular NAD levels and consequently increase SIRT1 activity. Administration of NMN in the context of elevated plasma FFA levels considerably improved glucose tolerance. This was due not only to partial protection from FFA-induced β cell dysfunction but also, unexpectedly, to a significant decrease in insulin clearance. However, in conditions of normal FFA levels, NMN impaired glucose tolerance due to decreased β cell function. The presence of this dual action of NMN suggests caution in its proposed therapeutic use in humans.


Author(s):  
Tomoko Nomiyama ◽  
Daiki Setoyama ◽  
Takehiro Yasukawa ◽  
Dongchon Kang

Summary Mitochondrial DNA (mtDNA) replication is tightly regulated and necessary for cellular homeostasis; however, its relationship with mitochondrial metabolism remains unclear. Advances in metabolomics integrated with the rapid isolation of mitochondria will allow for remarkable progress in analyzing mitochondrial metabolism. Here, we propose a novel methodology for mitochondria-targeted metabolomics, which employs a quick isolation procedure using a hemolytic toxin from Streptococcus pyogenes streptolysin O (SLO). SLO-isolation of mitochondria from cultured HEK293 cells is time- and labor-saving for simultaneous multi-sample processing and has been applied to various other cell lines in this study. Furthermore, our method can detect the time-dependent reduction in mitochondrial ATP in response to a glycolytic inhibitor 2-deoxyglucose, indicating the suitability to prepare metabolite analysis-competent mitochondria. Using this methodology, we searched for specific mitochondrial metabolites associated with mtDNA replication activation, and nucleotides and NAD+ were identified to be prominently altered. Most notably, treatment of β-Nicotinamide Mononucleotide (β-NMN), a precursor of NAD+, to HEK293 cells activated and improved the rate of mtDNA replication by increasing nucleotides in mitochondria and decreasing their degradation products: nucleosides. Our results suggest that β-NMN metabolism play a role in supporting mtDNA replication by maintaining the nucleotide pool balance in the mitochondria.


Sign in / Sign up

Export Citation Format

Share Document