Mitochondrial KATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential

2001 ◽  
Vol 281 (3) ◽  
pp. H1295-H1303 ◽  
Author(s):  
Meifeng Xu ◽  
Yigang Wang ◽  
Ahmar Ayub ◽  
Muhammad Ashraf

Mitochondrial membrane potential (ΔΨm) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K+ (mitoKATP) channel activation prevents the collapse of ΔΨm in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed ΔΨm, as monitored by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome cimmunostaining. Activation of mitoKATP channel with diazoxide (100 μmol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized ΔΨm. This protection was blocked by 5-hydroxydecanoate (500 μmol/l), a mitoKATPchannel-selective inhibitor, but not by HMR-1098 (30 μmol/l), a putative sarcolemmal KATP channel-selective inhibitor. Dissipation of ΔΨm also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts ΔΨm and induces apoptosis, which are prevented by the activation of the mitoKATP channel. This further emphasizes the therapeutic significance of mitoKATP channel agonists in the prevention of ischemia-reperfusion cell injury.

2003 ◽  
Vol 23 (3) ◽  
pp. 320-330 ◽  
Author(s):  
Zhao Zhong Chong ◽  
Jing-Qiong Kang ◽  
Kenneth Maiese

Erythropoietin (EPO) plays a prominent role in the regulation of the hematopoietic system, but the potential function of this trophic factor as a cytoprotectant in the cerebral vascular system is not known. The authors examined the ability of EPO to modulate a series of death-related cellular pathways during free radical–induced injury in cerebral microvascular endothelial cells (ECs). Endothelial cell injury was evaluated by trypan blue, DNA fragmentation, membrane phosphatidylserine exposure, apoptotic protease–activating factor-1 (Apaf-1), and Bcl-xL expression, mitochondrial membrane potential, cytochrome c release, and cysteine protease activity. They show that constitutive EPO is present in ECs but is insufficient to prevent cellular injury. Signaling through the EPO receptor, however, remains biologically responsive to exogenous EPO administration to offer significant protection against nitric oxide–induced injury. Exogenous EPO maintains both genomic DNA integrity and cellular membrane asymmetry through parallel pathways that prevent the induction of Apaf-1 and preserve mitochondrial membrane potential in conjunction with enhanced Bcl-xL expression. Consistent with the modulation of Apaf-1 and the release of cytochrome c, EPO also inhibits the activation of caspase-9 and caspase-3–like activities. Identification of novel cytoprotective pathways used by EPO may serve as therapeutic targets for cerebral vascular disease.


2005 ◽  
Vol 288 (4) ◽  
pp. H1820-H1828 ◽  
Author(s):  
Masao Saotome ◽  
Hideki Katoh ◽  
Hiroshi Satoh ◽  
Shiro Nagasaka ◽  
Shu Yoshihara ◽  
...  

Although recent studies focused on the contribution of mitochondrial Ca2+ to the mechanisms of ischemia-reperfusion injury, the regulation of mitochondrial Ca2+ under pathophysiological conditions remains largely unclear. By using saponin-permeabilized rat myocytes, we measured mitochondrial membrane potential (ΔΨm) and mitochondrial Ca2+ concentration ([Ca2+]m) at the physiological range of cytosolic Ca2+ concentration ([Ca2+]c; 300 nM) and investigated the regulation of [Ca2+]m during both normal and dissipated ΔΨm. When ΔΨm was partially depolarized by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP, 0.01–0.1 μM), there were dose-dependent decreases in [Ca2+]m. When complete ΔΨm dissipation was achieved by FCCP (0.3–1 μM), [Ca2+]m remained at one-half of the control level despite no Ca2+ influx via the Ca2+ uniporter. The ΔΨm dissipation by FCCP accelerated calcein leakage from mitochondria in a cyclosporin A (CsA)-sensitive manner, which indicates that ΔΨm dissipation opened the mitochondrial permeability transition pore (mPTP). After FCCP addition, inhibition of the mPTP by CsA caused further [Ca2+]m reduction; however, inhibition of mitochondrial Na+/Ca2+ exchange (mitoNCX) by a Na+-free solution abolished this [Ca2+]m reduction. Cytosolic Na+ concentrations that yielded one-half maximal activity levels for mitoNCX were 3.6 mM at normal ΔΨm and 7.6 mM at ΔΨm dissipation. We conclude that 1) the mitochondrial Ca2+ uniporter accumulates Ca2+ in a manner that is dependent on ΔΨm at the physiological range of [Ca2+]c; 2) ΔΨm dissipation opens the mPTP and results in Ca2+ influx to mitochondria; and 3) although mitoNCX activity is impaired, mitoNCX extrudes Ca2+ from the matrix even after ΔΨm dissipation.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Toshitaka Yajima ◽  
Stanley Park ◽  
Hanbing Zhou ◽  
Michinari Nakamura ◽  
Mitsuyo Machida ◽  
...  

MAVS is a mitochondrial outer membrane protein that activates innate antiviral signaling by recognizing cytosolic viral RNAs and DNAs. While the discovery of MAVS is the first molecular evidence that links mitochondria to innate immune mechanisms, it is still unclear whether MAVS affects mitochondrial cell death as a member of caspase activation and recruitment domain (CARD)-containing proteins. We found that MAVS interacts with Bax through CARD by Yeast two-hybrid and a series of immunoprecipitation (IP) assay, which led us to hypothesize that MAVS functions not only in the innate antiviral mechanisms but also in the mitochondrial cell death pathway. Methods: 1) We examined molecular interaction between MAVS and Bax under oxidative stress by IP using isolated myocytes with H2O2 stimulation and the heart post ischemia-reperfusion (I/R). 2) We evaluated the effect of MAVS on mitochondrial membrane potential and apoptosis under H2O2 stimulation using isolated myocytes with adenoviral MAVS knockdown. 3) We investigated the impact of MAVS on %myocardial infarction (%MI) post I/R using cardiac-specific MAVS knockout (cKO) and transgenic (cTg) mice which we have originally generated. 4) We examined the effect of MAVS on recombinant Bax (rBax)-mediated cytochrome c release using isolated mitochondria from wild type (WT) and MAVS KO mice. Results: 1) The amount of Bax pulled down with MAVS was significantly increased in isolated myocytes with 0.2 mM H2O2 compared to those without stimulation (mean±SD; 1.808±0.14, n=5, p<0.001) and in the heart post I/R compared to sham (2.2±1.19, n=3, p=0.0081). 2) Myocytes with MAVS knockdown showed clear abnormalities in mitochondrial membrane potential and caspace-3 cleavage with 0.2 mM H2O2 compared to control cardiomyocytes. 3) MAVS cKO had significantly larger %MI than WT (81.9 ± 5.8% vs. 42.6 ± 13.6%, n=8, p=0.0008). In contrast, MAVS cTg had significantly smaller %MI that WT (30.0 ± 4.8% vs. 49.2 ± 4.8%, n=10, p=0.0113). 4) Mitochondria from MAVS KO exhibited cytochrome c release after incubation with 2.5 μ g of rBax while those from WT required 10 μ g of rBax. Conclusion: These results demonstrate that MAVS protects cardiomyocyte under oxidative stress by interfering with Bax-mediated cytochrome c release from mitochondria.


2019 ◽  
Vol 317 (6) ◽  
pp. G862-G871
Author(s):  
Amrita Ahluwalia ◽  
Neil Hoa ◽  
Michael K. Jones ◽  
Andrzej S. Tarnawski

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DFN) and indomethacin (INDO) are extensively used worldwide. Their main side effects are injury of the gastrointestinal tract, including erosions, ulcers, and bleeding. Since gastric epithelial cells (GEPCs) are crucial for mucosal defense and are the major target of injury, we examined the extent to which DFN- and INDO-induced GEPC injury can be reversed by nerve growth factor (NGF), 16,16 dimethyl prostaglandin E2 (dmPGE2), and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of the metabolic sensor AMP kinase (AMPK). Cultured normal rat gastric mucosal epithelial (RGM1) cells were treated with PBS (control), NGF, dmPGE2, AICAR, and/or NSAID (DFN or INDO) for 1–4 h. We examined cell injury by confocal microscopy, cell death/survival using calcein AM, mitochondrial membrane potential using MitoTracker, and phosphorylation of AMPK by Western blotting. DFN and INDO treatment of RGM1 cells for 2 h decreased mitochondrial membrane potential and cell viability. NGF posttreatment (initiated 1 or 2 h after DFN or INDO) reversed the dissipation of mitochondrial membrane potential and cell injury caused by DFN and INDO and increased cell viability versus cells treated for 4 h with NSAID alone. Pretreatment with dmPGE2 and AICAR significantly protected these cells from DFN- and INDO-induced injury, whereas dmPGE2 and AICAR posttreatment (initiated 1 h after NSAID treatment) reversed cell injury and significantly increased cell viability and rescued the cells from NSAID-induced mitochondrial membrane potential reduction. DFN and INDO induce extensive mitochondrial injury and GEPC death, which can be significantly reversed by NGF, dmPGE2, and AICAR. NEW & NOTEWORTHY This study demonstrated that mitochondria are key targets of diclofenac- and indomethacin-induced injury of gastric epithelial cells and that diclofenac and indomethacin injury can be prevented and, importantly, also reversed by treatment with nerve growth factor, 16,16 dimethyl prostaglandin E2, and 5-aminoimidazole-4-carboxamide ribonucleotide.


2019 ◽  
Vol 21 (1) ◽  
pp. 220 ◽  
Author(s):  
Han-A Park ◽  
Nelli Mnatsakanyan ◽  
Katheryn Broman ◽  
Abigail U. Davis ◽  
Jordan May ◽  
...  

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.


2019 ◽  
Vol 25 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Leila Hosseini ◽  
Manouchehr S. Vafaee ◽  
Reza Badalzadeh

Ischemic heart diseases are the major reasons for disability and mortality in elderly individuals. In this study, we tried to examine the combined effects of nicotinamide mononucleotide (NMN) preconditioning and melatonin postconditioning on cardioprotection and mitochondrial function in ischemia/reperfusion (I/R) injury of aged male rats. Sixty aged Wistar rats were randomly allocated to 5 groups, including sham, control, NMN-receiving, melatonin-receiving, and combined therapy (NMN+melatonin). Isolated hearts were mounted on Langendorff apparatus and then underwent 30-minue ligation of left anterior descending coronary artery to induce regional ischemic insult, followed by 60 minutes of reperfusion. Nicotinamide mononucleotide (100 mg/kg/d intraperitoneally) was administered for every other day for 28 days before I/R. Melatonin added to perfusion solution, 5 minutes prior to the reperfusion up to 15 minutes early reperfusion. Myocardial hemodynamic and infarct size (IS) were measured, and the left ventricles samples were obtained to evaluate cardiac mitochondrial function and oxidative stress markers. Melatonin postconditioning and NMN had significant cardioprotective effects in aged rats; they could improve hemodynamic parameters and reduce IS and lactate dehydrogenase release compared to those of control group. Moreover, pretreatment with NMN increased the cardioprotection by melatonin. All treatments reduced oxidative stress and mitochondrial reactive oxygen species (ROS) levels and improved mitochondrial membrane potential and restored NAD+/NADH ratio. The effects of combined therapy on reduction of mitochondrial ROS and oxidative status and improvement of mitochondrial membrane potential were greater than those of alone treatments. Combination of melatonin and NMN can be a promising strategy to attenuate myocardial I/R damages in aged hearts. Restoration of mitochondrial function may substantially contribute to this cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document