Deriving Accurate Interproton Distances from ROESY Spectra with Limited Knowledge of Scalar Coupling Constants via the CARNIVAL Algorithm. An Iterative Complete-Relaxation-Matrix Approach

1995 ◽  
Vol 107 (1) ◽  
pp. 51-59 ◽  
Author(s):  
H. Liu ◽  
D.L. Banville ◽  
V.J. Basus ◽  
T.L. James
2011 ◽  
Vol 7 ◽  
pp. 145-150 ◽  
Author(s):  
Catharine R Jones ◽  
Craig P Butts ◽  
Jeremy N Harvey

The determination of accurate NOE-derived interproton distances and confirmation/prediction of relative populations in multi-conformer, flexible small molecules was investigated with the model compound 4-propylaniline. The low accuracy assumed for semi-quantitative NOE distance restraints is typically taken to suggest that large numbers of constraints need to be used in the dynamical analysis of flexible molecules, and this requires, for example, the measurement and Karplus-type analysis of scalar coupling constants (3 J CH and 3 J HH). Herein we demonstrate that, contrary to this common perception, NOE measurements alone are accurate enough to establish interproton distances, and hence conformational detail, in flexible molecules to within a few percent of their ensemble-averaged values, hence reducing the demand for additional restraints in such dynamic analyses.


1998 ◽  
Vol 15 (3-4) ◽  
pp. 401-406 ◽  
Author(s):  
A. Donati ◽  
C. Rossi ◽  
S. Martini ◽  
N. B. Ulyanov ◽  
T. L. James

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1298
Author(s):  
Ilya G. Shenderovich ◽  
Gleb S. Denisov

The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.


1993 ◽  
Vol 15 (4) ◽  
pp. 385-400 ◽  
Author(s):  
Alexandre M. J. J. Bonvin ◽  
J. Antoon C. Rullmann ◽  
Rolf M. J. N. Lamerichs ◽  
Rolf Boelens ◽  
Robert Kaptein

2013 ◽  
Vol 28 (14) ◽  
pp. 1350053 ◽  
Author(s):  
BRUCE L. SÁNCHEZ-VEGA ◽  
ILYA L. SHAPIRO

We start systematic investigation for the possibility to have supersymmetry (SUSY) as an asymptotic state of the gauge theory in the high energy (UV) limit, due to the renormalization group running of coupling constants of the theory. The answer on whether this situation takes place or not, can be resolved by dealing with the running of the ratios between Yukawa and scalar couplings to the gauge coupling. The behavior of these ratios does not depend too much on whether gauge coupling is asymptotically free (AF) or not. It can be shown that the UV stable fixed point for the Yukawa coupling is not supersymmetric. Taking this into account, one can break down SUSY only in the scalar coupling sector. We consider two simplest examples of such breaking, namely N = 1 supersymmetric QED and QCD. In one of the cases one can construct an example of SUSY being restored in the UV regime.


1974 ◽  
Vol 27 (2) ◽  
pp. 417 ◽  
Author(s):  
D Doddrell ◽  
KG Lewis ◽  
CE Mulquiney ◽  
W Adcock ◽  
W Kitching ◽  
...  

13C chemical shift variations within a series of phenyl, furyl and thienyl Group IVB organometallics appear to be best understood in terms of the usual alkyl and aryl substituent effects on 13C chemical shifts and not variations in dπ ?pπ metal-aryl interactions. Large changes in 13C-metal scalar coupling constants have been observed suggesting that other factors besides the s-character of the carbon-metal bond is responsible in determining the coupling constant.


Sign in / Sign up

Export Citation Format

Share Document