nmr properties
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christian F. Pantoja ◽  
Markus Zweckstetter ◽  
Nasrollah Rezaei-Ghaleh

Biomolecular phase separation plays a key role in spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for their function. Here, we employ a well-established phase separating model system, namely, triethylamine (TEA)-water mixture, and develop an NMR approach to detect the exchange of scaffolding TEA molecules between separate phases and determine the underlying exchange rate. We further demonstrate how the advantageous NMR properties of fluorine nuclei provide access to otherwise inaccessible exchange processes of a client molecule. The developed NMR-based approach allows quantitative monitoring of the effect of regulatory factors on component exchange and facilitates “exchange”-based screening and optimization of small molecules against druggable biomolecular targets located inside condensed phases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253612
Author(s):  
Lars A. Bratholm ◽  
Will Gerrard ◽  
Brandon Anderson ◽  
Shaojie Bai ◽  
Sunghwan Choi ◽  
...  

The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an open-source dataset, we worked with Kaggle to design and host a 3-month competition which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3 weeks, the Kaggle community produced models with comparable accuracy to our best previously published ‘in-house’ efforts. A meta-ensemble model constructed as a linear combination of the top predictions has a prediction accuracy which exceeds that of any individual model, 7-19x better than our previous state-of-the-art. The results highlight the potential of transformer architectures for predicting quantum mechanical (QM) molecular properties.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1298
Author(s):  
Ilya G. Shenderovich ◽  
Gleb S. Denisov

The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.


2021 ◽  
Vol 154 (14) ◽  
pp. 144201
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Alexandra V. Yurkovskaya ◽  
John W. Blanchard ◽  
Dmitry Budker ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Francesca Camponeschi ◽  
Angelo Gallo ◽  
Mario Piccioli ◽  
Lucia Banci

Abstract. Paramagnetic NMR spectroscopy and iron-sulfur (Fe–S) proteins have maintained a synergic relationship for decades. Indeed, the hyperfine shifts with their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues have been extensively used as a fingerprint of the type and of the oxidation state of the Fe–S cluster within the protein frame. The identification of NMR signals from residues surrounding the metal cofactor is crucial for understanding the structure-function relationship in Fe–S proteins, but it is generally impaired in standard NMR experiments by paramagnetic relaxation enhancement due to the presence of the paramagnetic cluster(s). On the other hand, the availability of systems of different size and stability has, over the years, stimulated NMR spectroscopists to exploit iron-sulfur proteins as paradigmatic cases to develop experiments, models and protocols. Here, the cluster binding properties of human mitoNEET have been investigated by one-dimensional and two-dimensional 1H diamagnetic and paramagnetic NMR, in its oxidized and reduced states. The NMR spectra of both oxidation states of mitoNEET appeared to be significantly different from those reported for previously investigated [Fe2S2]2+/+ proteins. We show how the use of 1D NOE experiments, 13C direct-detected experiments, and the optimization of NMR experiments for paramagnetic systems significantly reduce the blind sphere of the protein around the paramagnetic cluster. The application of this approach provided a detailed description of the unique electronic properties of mitoNEET, that are responsible for its biological function. Indeed, the NMR properties suggested that the specific electronic structure of the cluster possibly drives the functional properties of different [Fe2S2] proteins.


Author(s):  
Cándida Pastor Ramírez ◽  
Sylvain Bernès ◽  
Samuel Hernández Anzaldo ◽  
Yasmi Reyes Ortega

The new diamagnetic complex, [Zn2(N3)4(C6H6N2O)2] or [Zn2(pca)2(μ1,1-N3)2(N3)2] was synthesized using pyridine-2-carboxamide (pca) and azido ligands, and characterized using various techniques: IR spectroscopy and single-crystal X-ray diffraction in the solid state, and nuclear magnetic resonance (NMR) in solution. The molecule is placed on an inversion centre in space group P\overline{1}. The pca ligand chelates the metal centre via the pyridine N atom and the carbonyl O atom. One azido ligand bridges the two symmetry-related Zn2+ cations in the end-on coordination mode, while the other independent azido anion occupies the fifth coordination site, as a terminal ligand. The resulting five-coordinate Zn centres have a coordination geometry intermediate between trigonal bipyramidal and square pyramidal. The behaviour of the title complex in DMSO solution suggests that it is a suitable NMR probe for similar or isostructural complexes including other transition-metal ions. The diamagnetic nature of the complex is reflected in similar 1H and 13C NMR chemical shifts for the free ligand pca as for the Zn complex.


2021 ◽  
Vol 9 (2) ◽  
pp. 94-107
Author(s):  
Akin Azizoglu ◽  
◽  
Zuleyha Ozer ◽  
Carikci Sema ◽  
Turgut Kilic ◽  
...  

Sideroxol, a kaurene diterpene, was obtained from the acetone extract of Sideritis stricta plant. The ground-state molecular geometry, vibrational frequencies, and NMR chemical shifts were also investigated by using various density functional theories and Pople basis sets. The computed geometries are in good conformity with the experimental data. The comparison between theory and experiments indicates that B3LYP and M06 methods with the 6-31G(d) basis set are able to provide satisfactory results for predicting vibrational and NMR properties. There seems to be no significant effect of addition of diffuse and polarization functions in the basis set used herein.


2020 ◽  
Vol 63 (19-20) ◽  
pp. 1717-1730
Author(s):  
Farahnaz Maleki ◽  
Gianfranco Pacchioni

AbstractAcid and basic sites on monoclinic and tetragonal zirconia were investigated at the DFT level by computing IR and NMR properties of adsorbed probe molecules. Regular and stepped ZrO2 surfaces as well as stoichiometric zirconia nanoparticles have been considered. Acidity and basicity were probed by the adsorption of carbon monoxide and pyrrole, respectively. CO adsorption shows a positive shift of the C–O stretching frequency in IR spectra while the C atom of CO is shielded and 13C chemical shifts moves to higher field as a function of the strength of the acid site. For the study of basic sites we used a pyrrole molecule, but the interaction between the pyrrole ring and the surface leads to adsorption modes that cannot be used to titrate the surface basicity. On the other hand, at high coverage the molecule assumes an upright position and the formation of a hydrogen bond of the pyrrole NH group with the oxygen atoms of the surfaces provides a proxy of the basic properties of these sites. In particular, we focus on changes of the N–H IR frequency, 1H, 15N, and 17O NMR chemical shifts and their correlations with the surface basicity. Among the correlations found, that between the N–H stretching frequency of adsorbed pyrrole and the 17O NMR chemical shift of the O ion where the molecule is bound show a nice linear correlation. These two properties can provide useful information about the basic character of various O sites on the surface of zirconia. Graphic Abstract


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2085 ◽  
Author(s):  
Giacomo Saielli

In this work, I have analyzed the structure of binary mixtures of 1-butyl-3-methylimidazolium chloride ionic liquid, [C4C1im]Cl, and water, using computational NMR spectroscopy. The structure of the complex fluid phase, where the ionic and hydrophobic nature of ionic liquids is further complicated by the addition of water, is first generated by classical Molecular Dynamics (MD) and then validated by calculating the NMR properties with DFT at the ONIOM(B3LYP/cc-pVTZ//B3LYP/3-21G) on clusters extracted during the MD trajectories. Three ionic liquid/water mixtures have been considered with the [C4C1im]Cl mole fraction of 1.00, 0.50, and 0.01, that is the pure ionic liquid [C4C1im]Cl, the equimolar [C4C1im]Cl/water mixture, and a diluted solution of [C4C1im]Cl in water. A good agreement is obtained with published experimental data that, at the same time, validates the structural features obtained from the MD and the force field used, and provides an example of the power of NMR spectroscopy applied to complex fluid phases.


Sign in / Sign up

Export Citation Format

Share Document