Measurement of Spin–Lattice Relaxation Times and Concentrations in Systems with Chemical Exchange Using the One-Pulse Sequence: Breakdown of the Ernst Model for Partial Saturation in Nuclear Magnetic Resonance Spectroscopy

2000 ◽  
Vol 142 (1) ◽  
pp. 120-135 ◽  
Author(s):  
Richard G.S Spencer ◽  
Kenneth W Fishbein

The nuclear magnetic resonance spectra and spin-lattice relaxation times have been measured for the protons in n -pentane (C 5 H 12 ), n -hexane (C 6 H 14 ) and cyclo pentane (C 5 H 10 ) all in the solid state. The temperature range covered was from 70° K to the melting-points of 143·4° K for n -pentane, 177·8° K for n -hexane and 179·4° K for cyclo pentane. In the case of n -pentane and n -hexane the second moments of the absorption lines were found to be smaller than the computed rigid lattice values over the. whole temperature range. Possible molecular motions which might cause this reduction are discussed. It is suggested that the most probable type of motion is reorientation of the methyl groups at the ends of each molecule about the adjacent C—C bonds. An analysis of the spin-lattice relaxation times shows that this reorientation process is governed by an activation energy of 2·7 kcal/mole for n -pentane and 2·9 kcal/mole for n -hexane, values which support the mechanism postulated. At the lowest temperature the absorption lines had not reached their full widths, even though the reorientation frequencies at these temperatures were considerably less than the line-widths. The experimental second moment for cyclo pentane below about 120° K indicates that the lattice is effectively rigid in this temperature region. The uncertainties in both the experimental and theoretical second moments do not allow a distinction to be drawn between the plane and puckered molecular models. At the temperature of the first transition (122·4° K) the line-width second moment and relaxation time all show a sudden decrease. The low value of second moment at the higher temperatures indicates that considerable molecular motion is occurring, the molecules rotating with spherical symmetry. The change in crystal structure at the temperature of the second transition (138·1° K) is thought to be a direct result of this spherical symmetry. As the temperature increases, the results indicate that more molecular motion must be occurring, and it is thought that the rotating molecules are diffusing through the lattice.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 416-420
Author(s):  
Yoshihiro Furukawa ◽  
Daiyu Nakamura

The temperature dependence of 35Cl NQR spin-lattice relaxation times T1ClQ was observed for the crystal of the title complexes. For the Pd(II) and Pt(II) complexes, the log T1ClQ vs. 103 T-1 curves having gentle positive gradients at lower temperatures decreased sharply with increasing temperature from ca. 150 and ca. 130 K, respectively. This sharp decrease of T1ClQ can be explained by the C4 reorientation of the D4h complex anions with the activation energy Ea of 34 kJ mol-1 for the former and 29 kJ mol-1 for the latter complex. These values agree well with those estimated from 1H T1 showing temperature dependent dipolar-quadrupolar cross relaxation. For the Au(III) salt, two of four 35Cl NQR lines showed a sharp decrease in T1ClQ from ca. 270 K, suggesting the onset of the C4 reorientation of the one kind crystallographically equivalent anions with Ea of 67 kJ mol-1.


1989 ◽  
Vol 54 (7) ◽  
pp. 1928-1939 ◽  
Author(s):  
Miloš Buděšínský ◽  
Jiří Klinot

13C NMR spectra of sixteen lupane and 19β,28-epoxy-18α-oleanane triterpenoids I-XVI were measured and a complete structural assignment of chemical shifts was made. For most compounds also the carbon spin-lattice relaxation times T1 were obtained. Characteristic differences in chemical shifts of some carbon atom signals were found between 2α-methyl-3-oxo and 2α-methyl-1-oxo derivatives II, V and VIII with chair conformation of the ring A on the one hand and their 2β-isomers III, VI and IX (boat form) on the other. Using these 2-methyl ketones as models, the chair-boat population in allobetulone (I), 3-oxo-28-lupanenitrile (IV) and 1-oxo derivative VII was determined. The results agree well with the data obtained by other physical methods.


Sign in / Sign up

Export Citation Format

Share Document