VIBRATION ATTENUATION VIA CONSTRAINED LAYER DAMPING AND DASHPOT ON A SPRING–MASS–PLATE SYSTEM

2003 ◽  
Vol 259 (5) ◽  
pp. 1181-1198 ◽  
Author(s):  
S.-C YU ◽  
S.-C HUANG
2002 ◽  
Vol 8 (6) ◽  
pp. 747-775 ◽  
Author(s):  
Farhan Gandhi ◽  
Brian Munsky

This paper highlights the importance of considering the piezoelectric constraining layer voltage (or electric field) limits when evaluating the effectiveness of an active constrained layer damping treatment in attenuating resonant vibration. It is seen that, when position feedback is used, intermediate viscoelastic layer stiffness values are always optimal, and maximum allowable control gains and possible vibration attenuation progressively decrease with increasing excitation force levels. On the other hand, with velocity feedback, the optimal viscoelastic layer stiffness is dependent on the excitation level. For low excitation force amplitudes, stiff viscoelastic layers are most effective, with large velocity feedback gains producing substantial vibration attenuation without exceeding piezoelectric layer voltage limits. However, for higher excitation force levels, stiff viscoelastic layers result in excess voltages even at very small velocity feedback gains, and are unable to provide any vibration attenuation. In such a case, intermediate viscoelastic layer stiffness values are preferable, and maximum velocity feedback gains and possible vibration attenuation progressively decrease with increasing excitation level, as in the case of position feedback. For both position and velocity feedback, when excitation forces are beyond a certain level the allowable control gains are so limited that no additional damping is obtained beyond that already available through the passive treatment.


2018 ◽  
Vol 32 (24) ◽  
pp. 1850269 ◽  
Author(s):  
Qi Qin ◽  
Mei-Ping Sheng

A locally resonant (LR) plate made up of a thin plate attached with different types of resonators is analyzed in this paper. Each periodic element may consist of one or more spring-mass resonators attached onto one and the same surface of the plate lattice. The correctness of theoretical plane wave expansion (PWE) method adopted in this paper is validated through the comparisons with the classical theory and finite element method (FEM). When composing the LR plate system with two types of periodic resonant subsystems, there will appear two complete bandgaps, while other additional resonators may cause mainly directional gaps, calculated theoretically and numerically. From the comparisons of band-structure curves between a two-resonator-per-unit-element (TR-UE) system and both corresponding one-resonator-per-unit-element (OR-UE) systems, the bandgap width of the TR-UE system are not stacking effects of two OR-UE systems due to resonance interaction of different types of resonators. Moreover, via the deformation contours by FEM, the correspondence between the vibration modes of subsystems and the bandgap frequencies is demonstrated. The finite plate with limited resonators of two periodic types of parameters is modeled to show visually how flexural waves propagate within/without the bandgaps. Further, by adjusting the damping characteristic of both types of resonators, vibration attenuation band can be broadened widely.


Author(s):  
Walid Larbi ◽  
Jean-François Deü ◽  
Roberta Lima ◽  
Rubens Sampaio

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 889
Author(s):  
Yuhei Matsuda ◽  
Masaaki Karino ◽  
Tatsuo Okui ◽  
Takahiro Kanno

Two second-generation PLLA/PGA bioresorbable osteosynthetic plate systems for oral and maxillofacial surgery are available in Japan. The two systems have different PLLA-PGA component ratios (RapidSorb®, 85:15; Lactosorb®, 82:18) and plate and screw shapes. We conducted a retrospective study to compare our clinical evaluation and examine the incidence of postoperative complications between the two plate systems. A retrospective survey was conducted in 148 patients (midfacial fracture/trauma (68.2%) and dentofacial deformity patients (31.8%); males (54.7%); median age, 37.5 years) treated using maxillofacial osteosynthetic plate systems. The complications included plate exposure (7.4%), infection, (2.7%), and plate breakage (0.7%). Multivariate logistic regression analysis showed a significant correlation between sex (female), plate system (Lactosorb®), number of plates, and pyriform aperture and periorbital sites of plate placement (p < 0.05). Additionally, the propensity score-adjusted model showed a significant correlation between Lactosorb® and postoperative complications (odds ratio 1.007 (95% confidence interval, 1.001–1.055), p < 0.01). However, the two plate systems showed a low incidence rate of complications, and the plate integration and survivability were similar using 2.0-mm or 1.5-mm resorbable plate regardless of the plate system. Our findings suggest that female sex and a greater number of plates are risk factors for postoperative complications, whereas pyriform aperture and periorbital plate placements reduce the risk.


Author(s):  
Baoliang Chen ◽  
Peng Liu ◽  
Feiyun Xiao ◽  
Zhengshi Liu ◽  
Yong Wang

Quantitative assessment is crucial for the evaluation of human postural balance. The force plate system is the key quantitative balance assessment method. The purpose of this study is to review the important concepts in balance assessment and analyze the experimental conditions, parameter variables, and application scope based on force plate technology. As there is a wide range of balance assessment tests and a variety of commercial force plate systems to choose from, there is room for further improvement of the test details and evaluation variables of the balance assessment. The recommendations presented in this article are the foundation and key part of the postural balance assessment; these recommendations focus on the type of force plate, the subject’s foot posture, and the choice of assessment variables, which further enriches the content of posturography. In order to promote a more reasonable balance assessment method based on force plates, further methodological research and a stronger consensus are still needed.


Sign in / Sign up

Export Citation Format

Share Document