Purification and Functional Characterization of Wild-Type and Mutant HIV-1 and HIV-2 Tat Proteins Expressed inEscherichia coli

1996 ◽  
Vol 8 (2) ◽  
pp. 238-246 ◽  
Author(s):  
Michael J. Orsini ◽  
León F. Garcı́a-Martı́nez ◽  
Gopinath Mavankal ◽  
Richard B. Gaynor ◽  
Christine M. Debouck
2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  

2006 ◽  
Vol 263 (2) ◽  
pp. 223-228 ◽  
Author(s):  
Leonard C. Smeets ◽  
Stephen C. Becker ◽  
Gerard J. Barcak ◽  
Christina M.J.E. Vandenbroucke-Grauls ◽  
Wilbert Bitter ◽  
...  

2012 ◽  
Vol 29 (4-5) ◽  
pp. 211-217 ◽  
Author(s):  
CONSTANZE BICKELMANN ◽  
JAMES M. MORROW ◽  
JOHANNES MÜLLER ◽  
BELINDA S.W. CHANG

AbstractMonotremes are the most basal egg-laying mammals comprised of two extant genera, which are largely nocturnal. Visual pigments, the first step in the sensory transduction cascade in photoreceptors of the eye, have been examined in a variety of vertebrates, but little work has been done to study the rhodopsin of monotremes. We isolated the rhodopsin gene of the nocturnal short-beaked echidna (Tachyglossus aculeatus) and expressed and functionally characterized the protein in vitro. Three mutants were also expressed and characterized: N83D, an important site for spectral tuning and metarhodopsin kinetics, and two sites with amino acids unique to the echidna (T158A and F169A). The λmax of echidna rhodopsin (497.9 ± 1.1 nm) did not vary significantly in either T158A (498.0 ± 1.3 nm) or F169A (499.4 ± 0.1 nm) but was redshifted in N83D (503.8 ± 1.5 nm). Unlike other mammalian rhodopsins, echidna rhodopsin did react when exposed to hydroxylamine, although not as fast as cone opsins. The retinal release rate of light-activated echidna rhodopsin, as measured by fluorescence spectroscopy, had a half-life of 9.5 ± 2.6 min−1, which is significantly shorter than that of bovine rhodopsin. The half-life of the N83D mutant was 5.1 ± 0.1 min−1, even shorter than wild type. Our results show that with respect to hydroxylamine sensitivity and retinal release, the wild-type echidna rhodopsin displays major differences to all previously characterized mammalian rhodopsins and appears more similar to other nonmammalian vertebrate rhodopsins such as chicken and anole. However, our N83D mutagenesis results suggest that this site may mediate adaptation in the echidna to dim light environments, possibly via increased stability of light-activated intermediates. This study is the first characterization of a rhodopsin from a most basal mammal and indicates that there might be more functional variation in mammalian rhodopsins than previously assumed.


2004 ◽  
Vol 23 (23) ◽  
pp. 4560-4570 ◽  
Author(s):  
Pierre Morin ◽  
Corinne Sagné ◽  
Bruno Gasnier

2018 ◽  
Vol 2 (S1) ◽  
pp. 13-13
Author(s):  
John Barrows ◽  
David Long

OBJECTIVES/SPECIFIC AIMS: The objective of this work is to determine the mechanistic consequences of BRCA1 mutants in inter-strand crosslink (ICL) repair. METHODS/STUDY POPULATION: Our lab uses Xenopus egg extracts to study ICL repair. These extracts can be depleted of endogenous BRCA1 by immunoprecipitation. The goal of this work is to rescue endogenous depletion with in vitro translated, wild type BRCA1. Once achieved, we can supplement the depleted extract with BRCA1 mutants to access their function in ICL repair. RESULTS/ANTICIPATED RESULTS: We hypothesize that the BRCT and RING domain mutations will abrogate ICL repair, while mutations in the coiled coil region will not affect repair. DISCUSSION/SIGNIFICANCE OF IMPACT: These findings will have an immense impact on the understanding of BRCA1 domains. Importantly these results will spur personalized therapy of BRCA1 mutants by showing which domains are sensitive to cross-linking agents.


Sign in / Sign up

Export Citation Format

Share Document